breakpad/src/client/linux/microdump_writer/microdump_writer.cc
rmcilroy@chromium.org 8785c0cb8f Update breakpad for Android packed relocations.
Shared libraries containing Android packed relocations have a load
bias that differs from the start address in /proc/$$/maps. Current
breakpad assumes that the load bias and mapping start address are
the same.

Fixed by changing the client to detect the presence of Android packed
relocations in the address space of a loaded library, and adjusting the
stored mapping start address of any that are packed so that it contains
the linker's load bias.

For this to work properly, it is important that the non-packed library
is symbolized for breakpad. Either packed or non-packed libraries may
be run on the device; the client detects which has been loaded by the
linker.

BUG=499747
R=primiano@chromium.org, rmcilroy@chromium.org

Review URL: https://codereview.chromium.org/1189823002.

Patch from Simon Baldwin <simonb@chromium.org>.

git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@1459 4c0a9323-5329-0410-9bdc-e9ce6186880e
2015-06-19 16:30:42 +00:00

424 lines
14 KiB
C++

// Copyright (c) 2014, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This translation unit generates microdumps into the console (logcat on
// Android). See crbug.com/410294 for more info and design docs.
#include "client/linux/microdump_writer/microdump_writer.h"
#include <sys/utsname.h>
#include "client/linux/dump_writer_common/seccomp_unwinder.h"
#include "client/linux/dump_writer_common/thread_info.h"
#include "client/linux/dump_writer_common/ucontext_reader.h"
#include "client/linux/handler/exception_handler.h"
#include "client/linux/log/log.h"
#include "client/linux/minidump_writer/linux_ptrace_dumper.h"
#include "common/linux/linux_libc_support.h"
namespace {
using google_breakpad::ExceptionHandler;
using google_breakpad::LinuxDumper;
using google_breakpad::LinuxPtraceDumper;
using google_breakpad::MappingInfo;
using google_breakpad::MappingList;
using google_breakpad::RawContextCPU;
using google_breakpad::SeccompUnwinder;
using google_breakpad::ThreadInfo;
using google_breakpad::UContextReader;
const size_t kLineBufferSize = 2048;
class MicrodumpWriter {
public:
MicrodumpWriter(const ExceptionHandler::CrashContext* context,
const MappingList& mappings,
const char* build_fingerprint,
const char* product_info,
LinuxDumper* dumper)
: ucontext_(context ? &context->context : NULL),
#if !defined(__ARM_EABI__) && !defined(__mips__)
float_state_(context ? &context->float_state : NULL),
#endif
dumper_(dumper),
mapping_list_(mappings),
build_fingerprint_(build_fingerprint),
product_info_(product_info),
log_line_(NULL) {
log_line_ = reinterpret_cast<char*>(Alloc(kLineBufferSize));
if (log_line_)
log_line_[0] = '\0'; // Clear out the log line buffer.
}
~MicrodumpWriter() { dumper_->ThreadsResume(); }
bool Init() {
// In the exceptional case where the system was out of memory and there
// wasn't even room to allocate the line buffer, bail out. There is nothing
// useful we can possibly achieve without the ability to Log. At least let's
// try to not crash.
if (!dumper_->Init() || !log_line_)
return false;
return dumper_->ThreadsSuspend() && dumper_->LateInit();
}
bool Dump() {
bool success;
LogLine("-----BEGIN BREAKPAD MICRODUMP-----");
DumpProductInformation();
DumpOSInformation();
success = DumpCrashingThread();
if (success)
success = DumpMappings();
LogLine("-----END BREAKPAD MICRODUMP-----");
dumper_->ThreadsResume();
return success;
}
private:
// Writes one line to the system log.
void LogLine(const char* msg) {
logger::write(msg, my_strlen(msg));
#if !defined(__ANDROID__)
logger::write("\n", 1); // Android logger appends the \n. Linux's doesn't.
#endif
}
// Stages the given string in the current line buffer.
void LogAppend(const char* str) {
my_strlcat(log_line_, str, kLineBufferSize);
}
// As above (required to take precedence over template specialization below).
void LogAppend(char* str) {
LogAppend(const_cast<const char*>(str));
}
// Stages the hex repr. of the given int type in the current line buffer.
template<typename T>
void LogAppend(T value) {
// Make enough room to hex encode the largest int type + NUL.
static const char HEX[] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'A', 'B', 'C', 'D', 'E', 'F'};
char hexstr[sizeof(T) * 2 + 1];
for (int i = sizeof(T) * 2 - 1; i >= 0; --i, value >>= 4)
hexstr[i] = HEX[static_cast<uint8_t>(value) & 0x0F];
hexstr[sizeof(T) * 2] = '\0';
LogAppend(hexstr);
}
// Stages the buffer content hex-encoded in the current line buffer.
void LogAppend(const void* buf, size_t length) {
const uint8_t* ptr = reinterpret_cast<const uint8_t*>(buf);
for (size_t i = 0; i < length; ++i, ++ptr)
LogAppend(*ptr);
}
// Writes out the current line buffer on the system log.
void LogCommitLine() {
LogLine(log_line_);
my_strlcpy(log_line_, "", kLineBufferSize);
}
void DumpProductInformation() {
LogAppend("V ");
if (product_info_) {
LogAppend(product_info_);
} else {
LogAppend("UNKNOWN:0.0.0.0");
}
LogCommitLine();
}
void DumpOSInformation() {
const uint8_t n_cpus = static_cast<uint8_t>(sysconf(_SC_NPROCESSORS_CONF));
#if defined(__ANDROID__)
const char kOSId[] = "A";
#else
const char kOSId[] = "L";
#endif
// We cannot depend on uts.machine. On multiarch devices it always returns the
// primary arch, not the one that match the executable being run.
#if defined(__aarch64__)
const char kArch[] = "arm64";
#elif defined(__ARMEL__)
const char kArch[] = "arm";
#elif defined(__x86_64__)
const char kArch[] = "x86_64";
#elif defined(__i386__)
const char kArch[] = "x86";
#elif defined(__mips__)
const char kArch[] = "mips";
#else
#error "This code has not been ported to your platform yet"
#endif
LogAppend("O ");
LogAppend(kOSId);
LogAppend(" ");
LogAppend(kArch);
LogAppend(" ");
LogAppend(n_cpus);
LogAppend(" ");
// If the client has attached a build fingerprint to the MinidumpDescriptor
// use that one. Otherwise try to get some basic info from uname().
if (build_fingerprint_) {
LogAppend(build_fingerprint_);
} else {
struct utsname uts;
if (uname(&uts) == 0) {
LogAppend(uts.machine);
LogAppend(" ");
LogAppend(uts.release);
LogAppend(" ");
LogAppend(uts.version);
} else {
LogAppend("no build fingerprint available");
}
}
LogCommitLine();
}
bool DumpThreadStack(uint32_t thread_id,
uintptr_t stack_pointer,
int max_stack_len,
uint8_t** stack_copy) {
*stack_copy = NULL;
const void* stack;
size_t stack_len;
if (!dumper_->GetStackInfo(&stack, &stack_len, stack_pointer)) {
// The stack pointer might not be available. In this case we don't hard
// fail, just produce a (almost useless) microdump w/o a stack section.
return true;
}
LogAppend("S 0 ");
LogAppend(stack_pointer);
LogAppend(" ");
LogAppend(reinterpret_cast<uintptr_t>(stack));
LogAppend(" ");
LogAppend(stack_len);
LogCommitLine();
if (max_stack_len >= 0 &&
stack_len > static_cast<unsigned int>(max_stack_len)) {
stack_len = max_stack_len;
}
*stack_copy = reinterpret_cast<uint8_t*>(Alloc(stack_len));
dumper_->CopyFromProcess(*stack_copy, thread_id, stack, stack_len);
// Dump the content of the stack, splicing it into chunks which size is
// compatible with the max logcat line size (see LOGGER_ENTRY_MAX_PAYLOAD).
const size_t STACK_DUMP_CHUNK_SIZE = 384;
for (size_t stack_off = 0; stack_off < stack_len;
stack_off += STACK_DUMP_CHUNK_SIZE) {
LogAppend("S ");
LogAppend(reinterpret_cast<uintptr_t>(stack) + stack_off);
LogAppend(" ");
LogAppend(*stack_copy + stack_off,
std::min(STACK_DUMP_CHUNK_SIZE, stack_len - stack_off));
LogCommitLine();
}
return true;
}
// Write information about the crashing thread.
bool DumpCrashingThread() {
const unsigned num_threads = dumper_->threads().size();
for (unsigned i = 0; i < num_threads; ++i) {
MDRawThread thread;
my_memset(&thread, 0, sizeof(thread));
thread.thread_id = dumper_->threads()[i];
// Dump only the crashing thread.
if (static_cast<pid_t>(thread.thread_id) != dumper_->crash_thread())
continue;
assert(ucontext_);
assert(!dumper_->IsPostMortem());
uint8_t* stack_copy;
const uintptr_t stack_ptr = UContextReader::GetStackPointer(ucontext_);
if (!DumpThreadStack(thread.thread_id, stack_ptr, -1, &stack_copy))
return false;
RawContextCPU cpu;
my_memset(&cpu, 0, sizeof(RawContextCPU));
#if !defined(__ARM_EABI__) && !defined(__mips__)
UContextReader::FillCPUContext(&cpu, ucontext_, float_state_);
#else
UContextReader::FillCPUContext(&cpu, ucontext_);
#endif
if (stack_copy)
SeccompUnwinder::PopSeccompStackFrame(&cpu, thread, stack_copy);
DumpCPUState(&cpu);
}
return true;
}
void DumpCPUState(RawContextCPU* cpu) {
LogAppend("C ");
LogAppend(cpu, sizeof(*cpu));
LogCommitLine();
}
// If there is caller-provided information about this mapping
// in the mapping_list_ list, return true. Otherwise, return false.
bool HaveMappingInfo(const MappingInfo& mapping) {
for (MappingList::const_iterator iter = mapping_list_.begin();
iter != mapping_list_.end();
++iter) {
// Ignore any mappings that are wholly contained within
// mappings in the mapping_info_ list.
if (mapping.start_addr >= iter->first.start_addr &&
(mapping.start_addr + mapping.size) <=
(iter->first.start_addr + iter->first.size)) {
return true;
}
}
return false;
}
// Dump information about the provided |mapping|. If |identifier| is non-NULL,
// use it instead of calculating a file ID from the mapping.
void DumpModule(const MappingInfo& mapping,
bool member,
unsigned int mapping_id,
const uint8_t* identifier) {
MDGUID module_identifier;
if (identifier) {
// GUID was provided by caller.
my_memcpy(&module_identifier, identifier, sizeof(MDGUID));
} else {
dumper_->ElfFileIdentifierForMapping(
mapping,
member,
mapping_id,
reinterpret_cast<uint8_t*>(&module_identifier));
}
char file_name[NAME_MAX];
char file_path[NAME_MAX];
LinuxDumper::GetMappingEffectiveNameAndPath(
mapping, file_path, sizeof(file_path), file_name, sizeof(file_name));
LogAppend("M ");
LogAppend(static_cast<uintptr_t>(mapping.start_addr));
LogAppend(" ");
LogAppend(mapping.offset);
LogAppend(" ");
LogAppend(mapping.size);
LogAppend(" ");
LogAppend(module_identifier.data1);
LogAppend(module_identifier.data2);
LogAppend(module_identifier.data3);
LogAppend(module_identifier.data4[0]);
LogAppend(module_identifier.data4[1]);
LogAppend(module_identifier.data4[2]);
LogAppend(module_identifier.data4[3]);
LogAppend(module_identifier.data4[4]);
LogAppend(module_identifier.data4[5]);
LogAppend(module_identifier.data4[6]);
LogAppend(module_identifier.data4[7]);
LogAppend("0 "); // Age is always 0 on Linux.
LogAppend(file_name);
LogCommitLine();
}
// Write information about the mappings in effect.
bool DumpMappings() {
// First write all the mappings from the dumper
for (unsigned i = 0; i < dumper_->mappings().size(); ++i) {
const MappingInfo& mapping = *dumper_->mappings()[i];
if (mapping.name[0] == 0 || // only want modules with filenames.
!mapping.exec || // only want executable mappings.
mapping.size < 4096 || // too small to get a signature for.
HaveMappingInfo(mapping)) {
continue;
}
DumpModule(mapping, true, i, NULL);
}
// Next write all the mappings provided by the caller
for (MappingList::const_iterator iter = mapping_list_.begin();
iter != mapping_list_.end();
++iter) {
DumpModule(iter->first, false, 0, iter->second);
}
return true;
}
void* Alloc(unsigned bytes) { return dumper_->allocator()->Alloc(bytes); }
const struct ucontext* const ucontext_;
#if !defined(__ARM_EABI__) && !defined(__mips__)
const google_breakpad::fpstate_t* const float_state_;
#endif
LinuxDumper* dumper_;
const MappingList& mapping_list_;
const char* const build_fingerprint_;
const char* const product_info_;
char* log_line_;
};
} // namespace
namespace google_breakpad {
bool WriteMicrodump(pid_t crashing_process,
const void* blob,
size_t blob_size,
const MappingList& mappings,
const char* build_fingerprint,
const char* product_info) {
LinuxPtraceDumper dumper(crashing_process);
const ExceptionHandler::CrashContext* context = NULL;
if (blob) {
if (blob_size != sizeof(ExceptionHandler::CrashContext))
return false;
context = reinterpret_cast<const ExceptionHandler::CrashContext*>(blob);
dumper.set_crash_address(
reinterpret_cast<uintptr_t>(context->siginfo.si_addr));
dumper.set_crash_signal(context->siginfo.si_signo);
dumper.set_crash_thread(context->tid);
}
MicrodumpWriter writer(context, mappings, build_fingerprint, product_info,
&dumper);
if (!writer.Init())
return false;
return writer.Dump();
}
} // namespace google_breakpad