mirror of
https://git.suyu.dev/suyu/breakpad.git
synced 2026-02-06 21:34:02 +00:00
When changing a module's start_addr to account for Android packed relocations, also adjust its size field so that the apparent module end addr calculated by the breakpad processor does not alter. Ensures that the mapping entry from a packed library is consistent with that which an unpacked one would produce. BUG=499747 R=primiano@chromium.org, rmcilroy@chromium.org Review URL: https://codereview.chromium.org/1211863002. Patch from Simon Baldwin <simonb@chromium.org>. git-svn-id: http://google-breakpad.googlecode.com/svn/trunk@1465 4c0a9323-5329-0410-9bdc-e9ce6186880e
606 lines
21 KiB
C++
606 lines
21 KiB
C++
// Copyright (c) 2010, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// linux_dumper.cc: Implement google_breakpad::LinuxDumper.
|
|
// See linux_dumper.h for details.
|
|
|
|
// This code deals with the mechanics of getting information about a crashed
|
|
// process. Since this code may run in a compromised address space, the same
|
|
// rules apply as detailed at the top of minidump_writer.h: no libc calls and
|
|
// use the alternative allocator.
|
|
|
|
#include "client/linux/minidump_writer/linux_dumper.h"
|
|
|
|
#include <assert.h>
|
|
#include <elf.h>
|
|
#include <fcntl.h>
|
|
#include <limits.h>
|
|
#include <stddef.h>
|
|
#include <string.h>
|
|
|
|
#include "client/linux/minidump_writer/line_reader.h"
|
|
#include "common/linux/elfutils.h"
|
|
#include "common/linux/file_id.h"
|
|
#include "common/linux/linux_libc_support.h"
|
|
#include "common/linux/memory_mapped_file.h"
|
|
#include "common/linux/safe_readlink.h"
|
|
#include "third_party/lss/linux_syscall_support.h"
|
|
|
|
#if defined(__ANDROID__)
|
|
|
|
// Android packed relocations definitions are not yet available from the
|
|
// NDK header files, so we have to provide them manually here.
|
|
#ifndef DT_LOOS
|
|
#define DT_LOOS 0x6000000d
|
|
#endif
|
|
#ifndef DT_ANDROID_REL
|
|
static const int DT_ANDROID_REL = DT_LOOS + 2;
|
|
#endif
|
|
#ifndef DT_ANDROID_RELA
|
|
static const int DT_ANDROID_RELA = DT_LOOS + 4;
|
|
#endif
|
|
|
|
#endif // __ANDROID __
|
|
|
|
static const char kMappedFileUnsafePrefix[] = "/dev/";
|
|
static const char kDeletedSuffix[] = " (deleted)";
|
|
static const char kReservedFlags[] = " ---p";
|
|
|
|
inline static bool IsMappedFileOpenUnsafe(
|
|
const google_breakpad::MappingInfo& mapping) {
|
|
// It is unsafe to attempt to open a mapped file that lives under /dev,
|
|
// because the semantics of the open may be driver-specific so we'd risk
|
|
// hanging the crash dumper. And a file in /dev/ almost certainly has no
|
|
// ELF file identifier anyways.
|
|
return my_strncmp(mapping.name,
|
|
kMappedFileUnsafePrefix,
|
|
sizeof(kMappedFileUnsafePrefix) - 1) == 0;
|
|
}
|
|
|
|
namespace google_breakpad {
|
|
|
|
// All interesting auvx entry types are below AT_SYSINFO_EHDR
|
|
#define AT_MAX AT_SYSINFO_EHDR
|
|
|
|
LinuxDumper::LinuxDumper(pid_t pid)
|
|
: pid_(pid),
|
|
crash_address_(0),
|
|
crash_signal_(0),
|
|
crash_thread_(pid),
|
|
threads_(&allocator_, 8),
|
|
mappings_(&allocator_),
|
|
auxv_(&allocator_, AT_MAX + 1) {
|
|
// The passed-in size to the constructor (above) is only a hint.
|
|
// Must call .resize() to do actual initialization of the elements.
|
|
auxv_.resize(AT_MAX + 1);
|
|
}
|
|
|
|
LinuxDumper::~LinuxDumper() {
|
|
}
|
|
|
|
bool LinuxDumper::Init() {
|
|
return ReadAuxv() && EnumerateThreads() && EnumerateMappings();
|
|
}
|
|
|
|
bool LinuxDumper::LateInit() {
|
|
#if defined(__ANDROID__)
|
|
LatePostprocessMappings();
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
LinuxDumper::ElfFileIdentifierForMapping(const MappingInfo& mapping,
|
|
bool member,
|
|
unsigned int mapping_id,
|
|
uint8_t identifier[sizeof(MDGUID)]) {
|
|
assert(!member || mapping_id < mappings_.size());
|
|
my_memset(identifier, 0, sizeof(MDGUID));
|
|
if (IsMappedFileOpenUnsafe(mapping))
|
|
return false;
|
|
|
|
// Special-case linux-gate because it's not a real file.
|
|
if (my_strcmp(mapping.name, kLinuxGateLibraryName) == 0) {
|
|
void* linux_gate = NULL;
|
|
if (pid_ == sys_getpid()) {
|
|
linux_gate = reinterpret_cast<void*>(mapping.start_addr);
|
|
} else {
|
|
linux_gate = allocator_.Alloc(mapping.size);
|
|
CopyFromProcess(linux_gate, pid_,
|
|
reinterpret_cast<const void*>(mapping.start_addr),
|
|
mapping.size);
|
|
}
|
|
return FileID::ElfFileIdentifierFromMappedFile(linux_gate, identifier);
|
|
}
|
|
|
|
char filename[NAME_MAX];
|
|
size_t filename_len = my_strlen(mapping.name);
|
|
if (filename_len >= NAME_MAX) {
|
|
assert(false);
|
|
return false;
|
|
}
|
|
my_memcpy(filename, mapping.name, filename_len);
|
|
filename[filename_len] = '\0';
|
|
bool filename_modified = HandleDeletedFileInMapping(filename);
|
|
|
|
MemoryMappedFile mapped_file(filename, mapping.offset);
|
|
if (!mapped_file.data() || mapped_file.size() < SELFMAG)
|
|
return false;
|
|
|
|
bool success =
|
|
FileID::ElfFileIdentifierFromMappedFile(mapped_file.data(), identifier);
|
|
if (success && member && filename_modified) {
|
|
mappings_[mapping_id]->name[filename_len -
|
|
sizeof(kDeletedSuffix) + 1] = '\0';
|
|
}
|
|
|
|
return success;
|
|
}
|
|
|
|
namespace {
|
|
bool ElfFileSoNameFromMappedFile(
|
|
const void* elf_base, char* soname, size_t soname_size) {
|
|
if (!IsValidElf(elf_base)) {
|
|
// Not ELF
|
|
return false;
|
|
}
|
|
|
|
const void* segment_start;
|
|
size_t segment_size;
|
|
int elf_class;
|
|
if (!FindElfSection(elf_base, ".dynamic", SHT_DYNAMIC,
|
|
&segment_start, &segment_size, &elf_class)) {
|
|
// No dynamic section
|
|
return false;
|
|
}
|
|
|
|
const void* dynstr_start;
|
|
size_t dynstr_size;
|
|
if (!FindElfSection(elf_base, ".dynstr", SHT_STRTAB,
|
|
&dynstr_start, &dynstr_size, &elf_class)) {
|
|
// No dynstr section
|
|
return false;
|
|
}
|
|
|
|
const ElfW(Dyn)* dynamic = static_cast<const ElfW(Dyn)*>(segment_start);
|
|
size_t dcount = segment_size / sizeof(ElfW(Dyn));
|
|
for (const ElfW(Dyn)* dyn = dynamic; dyn < dynamic + dcount; ++dyn) {
|
|
if (dyn->d_tag == DT_SONAME) {
|
|
const char* dynstr = static_cast<const char*>(dynstr_start);
|
|
if (dyn->d_un.d_val >= dynstr_size) {
|
|
// Beyond the end of the dynstr section
|
|
return false;
|
|
}
|
|
const char* str = dynstr + dyn->d_un.d_val;
|
|
const size_t maxsize = dynstr_size - dyn->d_un.d_val;
|
|
my_strlcpy(soname, str, maxsize < soname_size ? maxsize : soname_size);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Did not find SONAME
|
|
return false;
|
|
}
|
|
|
|
// Find the shared object name (SONAME) by examining the ELF information
|
|
// for |mapping|. If the SONAME is found copy it into the passed buffer
|
|
// |soname| and return true. The size of the buffer is |soname_size|.
|
|
// The SONAME will be truncated if it is too long to fit in the buffer.
|
|
bool ElfFileSoName(
|
|
const MappingInfo& mapping, char* soname, size_t soname_size) {
|
|
if (IsMappedFileOpenUnsafe(mapping)) {
|
|
// Not safe
|
|
return false;
|
|
}
|
|
|
|
char filename[NAME_MAX];
|
|
size_t filename_len = my_strlen(mapping.name);
|
|
if (filename_len >= NAME_MAX) {
|
|
assert(false);
|
|
// name too long
|
|
return false;
|
|
}
|
|
|
|
my_memcpy(filename, mapping.name, filename_len);
|
|
filename[filename_len] = '\0';
|
|
|
|
MemoryMappedFile mapped_file(filename, mapping.offset);
|
|
if (!mapped_file.data() || mapped_file.size() < SELFMAG) {
|
|
// mmap failed
|
|
return false;
|
|
}
|
|
|
|
return ElfFileSoNameFromMappedFile(mapped_file.data(), soname, soname_size);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
|
|
// static
|
|
void LinuxDumper::GetMappingEffectiveNameAndPath(const MappingInfo& mapping,
|
|
char* file_path,
|
|
size_t file_path_size,
|
|
char* file_name,
|
|
size_t file_name_size) {
|
|
my_strlcpy(file_path, mapping.name, file_path_size);
|
|
|
|
// If an executable is mapped from a non-zero offset, this is likely because
|
|
// the executable was loaded directly from inside an archive file (e.g., an
|
|
// apk on Android). We try to find the name of the shared object (SONAME) by
|
|
// looking in the file for ELF sections.
|
|
bool mapped_from_archive = false;
|
|
if (mapping.exec && mapping.offset != 0)
|
|
mapped_from_archive = ElfFileSoName(mapping, file_name, file_name_size);
|
|
|
|
if (mapped_from_archive) {
|
|
// Some tools (e.g., stackwalk) extract the basename from the pathname. In
|
|
// this case, we append the file_name to the mapped archive path as follows:
|
|
// file_name := libname.so
|
|
// file_path := /path/to/ARCHIVE.APK/libname.so
|
|
if (my_strlen(file_path) + 1 + my_strlen(file_name) < file_path_size) {
|
|
my_strlcat(file_path, "/", file_path_size);
|
|
my_strlcat(file_path, file_name, file_path_size);
|
|
}
|
|
} else {
|
|
// Common case:
|
|
// file_path := /path/to/libname.so
|
|
// file_name := libname.so
|
|
const char* basename = my_strrchr(file_path, '/');
|
|
basename = basename == NULL ? file_path : (basename + 1);
|
|
my_strlcpy(file_name, basename, file_name_size);
|
|
}
|
|
}
|
|
|
|
bool LinuxDumper::ReadAuxv() {
|
|
char auxv_path[NAME_MAX];
|
|
if (!BuildProcPath(auxv_path, pid_, "auxv")) {
|
|
return false;
|
|
}
|
|
|
|
int fd = sys_open(auxv_path, O_RDONLY, 0);
|
|
if (fd < 0) {
|
|
return false;
|
|
}
|
|
|
|
elf_aux_entry one_aux_entry;
|
|
bool res = false;
|
|
while (sys_read(fd,
|
|
&one_aux_entry,
|
|
sizeof(elf_aux_entry)) == sizeof(elf_aux_entry) &&
|
|
one_aux_entry.a_type != AT_NULL) {
|
|
if (one_aux_entry.a_type <= AT_MAX) {
|
|
auxv_[one_aux_entry.a_type] = one_aux_entry.a_un.a_val;
|
|
res = true;
|
|
}
|
|
}
|
|
sys_close(fd);
|
|
return res;
|
|
}
|
|
|
|
bool LinuxDumper::EnumerateMappings() {
|
|
char maps_path[NAME_MAX];
|
|
if (!BuildProcPath(maps_path, pid_, "maps"))
|
|
return false;
|
|
|
|
// linux_gate_loc is the beginning of the kernel's mapping of
|
|
// linux-gate.so in the process. It doesn't actually show up in the
|
|
// maps list as a filename, but it can be found using the AT_SYSINFO_EHDR
|
|
// aux vector entry, which gives the information necessary to special
|
|
// case its entry when creating the list of mappings.
|
|
// See http://www.trilithium.com/johan/2005/08/linux-gate/ for more
|
|
// information.
|
|
const void* linux_gate_loc =
|
|
reinterpret_cast<void *>(auxv_[AT_SYSINFO_EHDR]);
|
|
// Although the initial executable is usually the first mapping, it's not
|
|
// guaranteed (see http://crosbug.com/25355); therefore, try to use the
|
|
// actual entry point to find the mapping.
|
|
const void* entry_point_loc = reinterpret_cast<void *>(auxv_[AT_ENTRY]);
|
|
|
|
const int fd = sys_open(maps_path, O_RDONLY, 0);
|
|
if (fd < 0)
|
|
return false;
|
|
LineReader* const line_reader = new(allocator_) LineReader(fd);
|
|
|
|
const char* line;
|
|
unsigned line_len;
|
|
while (line_reader->GetNextLine(&line, &line_len)) {
|
|
uintptr_t start_addr, end_addr, offset;
|
|
|
|
const char* i1 = my_read_hex_ptr(&start_addr, line);
|
|
if (*i1 == '-') {
|
|
const char* i2 = my_read_hex_ptr(&end_addr, i1 + 1);
|
|
if (*i2 == ' ') {
|
|
bool exec = (*(i2 + 3) == 'x');
|
|
const char* i3 = my_read_hex_ptr(&offset, i2 + 6 /* skip ' rwxp ' */);
|
|
if (*i3 == ' ') {
|
|
const char* name = NULL;
|
|
// Only copy name if the name is a valid path name, or if
|
|
// it's the VDSO image.
|
|
if (((name = my_strchr(line, '/')) == NULL) &&
|
|
linux_gate_loc &&
|
|
reinterpret_cast<void*>(start_addr) == linux_gate_loc) {
|
|
name = kLinuxGateLibraryName;
|
|
offset = 0;
|
|
}
|
|
// Merge adjacent mappings with the same name into one module,
|
|
// assuming they're a single library mapped by the dynamic linker
|
|
if (name && !mappings_.empty()) {
|
|
MappingInfo* module = mappings_.back();
|
|
if ((start_addr == module->start_addr + module->size) &&
|
|
(my_strlen(name) == my_strlen(module->name)) &&
|
|
(my_strncmp(name, module->name, my_strlen(name)) == 0)) {
|
|
module->size = end_addr - module->start_addr;
|
|
line_reader->PopLine(line_len);
|
|
continue;
|
|
}
|
|
}
|
|
// Also merge mappings that result from address ranges that the
|
|
// linker reserved but which a loaded library did not use. These
|
|
// appear as an anonymous private mapping with no access flags set
|
|
// and which directly follow an executable mapping.
|
|
if (!name && !mappings_.empty()) {
|
|
MappingInfo* module = mappings_.back();
|
|
if ((start_addr == module->start_addr + module->size) &&
|
|
module->exec &&
|
|
module->name[0] == '/' &&
|
|
offset == 0 && my_strncmp(i2,
|
|
kReservedFlags,
|
|
sizeof(kReservedFlags) - 1) == 0) {
|
|
module->size = end_addr - module->start_addr;
|
|
line_reader->PopLine(line_len);
|
|
continue;
|
|
}
|
|
}
|
|
MappingInfo* const module = new(allocator_) MappingInfo;
|
|
my_memset(module, 0, sizeof(MappingInfo));
|
|
module->start_addr = start_addr;
|
|
module->size = end_addr - start_addr;
|
|
module->offset = offset;
|
|
module->exec = exec;
|
|
if (name != NULL) {
|
|
const unsigned l = my_strlen(name);
|
|
if (l < sizeof(module->name))
|
|
my_memcpy(module->name, name, l);
|
|
}
|
|
// If this is the entry-point mapping, and it's not already the
|
|
// first one, then we need to make it be first. This is because
|
|
// the minidump format assumes the first module is the one that
|
|
// corresponds to the main executable (as codified in
|
|
// processor/minidump.cc:MinidumpModuleList::GetMainModule()).
|
|
if (entry_point_loc &&
|
|
(entry_point_loc >=
|
|
reinterpret_cast<void*>(module->start_addr)) &&
|
|
(entry_point_loc <
|
|
reinterpret_cast<void*>(module->start_addr+module->size)) &&
|
|
!mappings_.empty()) {
|
|
// push the module onto the front of the list.
|
|
mappings_.resize(mappings_.size() + 1);
|
|
for (size_t idx = mappings_.size() - 1; idx > 0; idx--)
|
|
mappings_[idx] = mappings_[idx - 1];
|
|
mappings_[0] = module;
|
|
} else {
|
|
mappings_.push_back(module);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
line_reader->PopLine(line_len);
|
|
}
|
|
|
|
sys_close(fd);
|
|
|
|
return !mappings_.empty();
|
|
}
|
|
|
|
#if defined(__ANDROID__)
|
|
|
|
bool LinuxDumper::GetLoadedElfHeader(uintptr_t start_addr, ElfW(Ehdr)* ehdr) {
|
|
CopyFromProcess(ehdr, pid_,
|
|
reinterpret_cast<const void*>(start_addr),
|
|
sizeof(*ehdr));
|
|
return my_memcmp(&ehdr->e_ident, ELFMAG, SELFMAG) == 0;
|
|
}
|
|
|
|
void LinuxDumper::ParseLoadedElfProgramHeaders(ElfW(Ehdr)* ehdr,
|
|
uintptr_t start_addr,
|
|
uintptr_t* min_vaddr_ptr,
|
|
uintptr_t* dyn_vaddr_ptr,
|
|
size_t* dyn_count_ptr) {
|
|
uintptr_t phdr_addr = start_addr + ehdr->e_phoff;
|
|
|
|
const uintptr_t max_addr = UINTPTR_MAX;
|
|
uintptr_t min_vaddr = max_addr;
|
|
uintptr_t dyn_vaddr = 0;
|
|
size_t dyn_count = 0;
|
|
|
|
for (size_t i = 0; i < ehdr->e_phnum; ++i) {
|
|
ElfW(Phdr) phdr;
|
|
CopyFromProcess(&phdr, pid_,
|
|
reinterpret_cast<const void*>(phdr_addr),
|
|
sizeof(phdr));
|
|
if (phdr.p_type == PT_LOAD && phdr.p_vaddr < min_vaddr) {
|
|
min_vaddr = phdr.p_vaddr;
|
|
}
|
|
if (phdr.p_type == PT_DYNAMIC) {
|
|
dyn_vaddr = phdr.p_vaddr;
|
|
dyn_count = phdr.p_memsz / sizeof(ElfW(Dyn));
|
|
}
|
|
phdr_addr += sizeof(phdr);
|
|
}
|
|
|
|
*min_vaddr_ptr = min_vaddr;
|
|
*dyn_vaddr_ptr = dyn_vaddr;
|
|
*dyn_count_ptr = dyn_count;
|
|
}
|
|
|
|
bool LinuxDumper::HasAndroidPackedRelocations(uintptr_t load_bias,
|
|
uintptr_t dyn_vaddr,
|
|
size_t dyn_count) {
|
|
uintptr_t dyn_addr = load_bias + dyn_vaddr;
|
|
for (size_t i = 0; i < dyn_count; ++i) {
|
|
ElfW(Dyn) dyn;
|
|
CopyFromProcess(&dyn, pid_,
|
|
reinterpret_cast<const void*>(dyn_addr),
|
|
sizeof(dyn));
|
|
if (dyn.d_tag == DT_ANDROID_REL || dyn.d_tag == DT_ANDROID_RELA) {
|
|
return true;
|
|
}
|
|
dyn_addr += sizeof(dyn);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
uintptr_t LinuxDumper::GetEffectiveLoadBias(ElfW(Ehdr)* ehdr,
|
|
uintptr_t start_addr) {
|
|
uintptr_t min_vaddr = 0;
|
|
uintptr_t dyn_vaddr = 0;
|
|
size_t dyn_count = 0;
|
|
ParseLoadedElfProgramHeaders(ehdr, start_addr,
|
|
&min_vaddr, &dyn_vaddr, &dyn_count);
|
|
// If |min_vaddr| is non-zero and we find Android packed relocation tags,
|
|
// return the effective load bias.
|
|
if (min_vaddr != 0) {
|
|
const uintptr_t load_bias = start_addr - min_vaddr;
|
|
if (HasAndroidPackedRelocations(load_bias, dyn_vaddr, dyn_count)) {
|
|
return load_bias;
|
|
}
|
|
}
|
|
// Either |min_vaddr| is zero, or it is non-zero but we did not find the
|
|
// expected Android packed relocations tags.
|
|
return start_addr;
|
|
}
|
|
|
|
void LinuxDumper::LatePostprocessMappings() {
|
|
for (size_t i = 0; i < mappings_.size(); ++i) {
|
|
// Only consider exec mappings that indicate a file path was mapped, and
|
|
// where the ELF header indicates a mapped shared library.
|
|
MappingInfo* mapping = mappings_[i];
|
|
if (!(mapping->exec && mapping->name[0] == '/')) {
|
|
continue;
|
|
}
|
|
ElfW(Ehdr) ehdr;
|
|
if (!GetLoadedElfHeader(mapping->start_addr, &ehdr)) {
|
|
continue;
|
|
}
|
|
if (ehdr.e_type == ET_DYN) {
|
|
// Compute the effective load bias for this mapped library, and update
|
|
// the mapping to hold that rather than |start_addr|, at the same time
|
|
// adjusting |size| to account for the change in |start_addr|. Where
|
|
// the library does not contain Android packed relocations,
|
|
// GetEffectiveLoadBias() returns |start_addr| and the mapping entry
|
|
// is not changed.
|
|
const uintptr_t load_bias = GetEffectiveLoadBias(&ehdr,
|
|
mapping->start_addr);
|
|
mapping->size += mapping->start_addr - load_bias;
|
|
mapping->start_addr = load_bias;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // __ANDROID__
|
|
|
|
// Get information about the stack, given the stack pointer. We don't try to
|
|
// walk the stack since we might not have all the information needed to do
|
|
// unwind. So we just grab, up to, 32k of stack.
|
|
bool LinuxDumper::GetStackInfo(const void** stack, size_t* stack_len,
|
|
uintptr_t int_stack_pointer) {
|
|
// Move the stack pointer to the bottom of the page that it's in.
|
|
const uintptr_t page_size = getpagesize();
|
|
|
|
uint8_t* const stack_pointer =
|
|
reinterpret_cast<uint8_t*>(int_stack_pointer & ~(page_size - 1));
|
|
|
|
// The number of bytes of stack which we try to capture.
|
|
static const ptrdiff_t kStackToCapture = 32 * 1024;
|
|
|
|
const MappingInfo* mapping = FindMapping(stack_pointer);
|
|
if (!mapping)
|
|
return false;
|
|
const ptrdiff_t offset = stack_pointer -
|
|
reinterpret_cast<uint8_t*>(mapping->start_addr);
|
|
const ptrdiff_t distance_to_end =
|
|
static_cast<ptrdiff_t>(mapping->size) - offset;
|
|
*stack_len = distance_to_end > kStackToCapture ?
|
|
kStackToCapture : distance_to_end;
|
|
*stack = stack_pointer;
|
|
return true;
|
|
}
|
|
|
|
// Find the mapping which the given memory address falls in.
|
|
const MappingInfo* LinuxDumper::FindMapping(const void* address) const {
|
|
const uintptr_t addr = (uintptr_t) address;
|
|
|
|
for (size_t i = 0; i < mappings_.size(); ++i) {
|
|
const uintptr_t start = static_cast<uintptr_t>(mappings_[i]->start_addr);
|
|
if (addr >= start && addr - start < mappings_[i]->size)
|
|
return mappings_[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
bool LinuxDumper::HandleDeletedFileInMapping(char* path) const {
|
|
static const size_t kDeletedSuffixLen = sizeof(kDeletedSuffix) - 1;
|
|
|
|
// Check for ' (deleted)' in |path|.
|
|
// |path| has to be at least as long as "/x (deleted)".
|
|
const size_t path_len = my_strlen(path);
|
|
if (path_len < kDeletedSuffixLen + 2)
|
|
return false;
|
|
if (my_strncmp(path + path_len - kDeletedSuffixLen, kDeletedSuffix,
|
|
kDeletedSuffixLen) != 0) {
|
|
return false;
|
|
}
|
|
|
|
// Check |path| against the /proc/pid/exe 'symlink'.
|
|
char exe_link[NAME_MAX];
|
|
char new_path[NAME_MAX];
|
|
if (!BuildProcPath(exe_link, pid_, "exe"))
|
|
return false;
|
|
if (!SafeReadLink(exe_link, new_path))
|
|
return false;
|
|
if (my_strcmp(path, new_path) != 0)
|
|
return false;
|
|
|
|
// Check to see if someone actually named their executable 'foo (deleted)'.
|
|
struct kernel_stat exe_stat;
|
|
struct kernel_stat new_path_stat;
|
|
if (sys_stat(exe_link, &exe_stat) == 0 &&
|
|
sys_stat(new_path, &new_path_stat) == 0 &&
|
|
exe_stat.st_dev == new_path_stat.st_dev &&
|
|
exe_stat.st_ino == new_path_stat.st_ino) {
|
|
return false;
|
|
}
|
|
|
|
my_memcpy(path, exe_link, NAME_MAX);
|
|
return true;
|
|
}
|
|
|
|
} // namespace google_breakpad
|