/* This file is part of the dynarmic project. * Copyright (c) 2020 MerryMage * SPDX-License-Identifier: 0BSD */ #include "common/bit_util.h" #include "frontend/A32/translate/impl/translate_arm.h" namespace Dynarmic::A32 { bool ArmTranslatorVisitor::asimd_VREV(bool D, size_t sz, size_t Vd, size_t op, bool Q, bool M, size_t Vm) { if (op + sz >= 3) { return UndefinedInstruction(); } if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto result = [this, m, op, sz] { const auto reg_m = ir.GetVector(m); const size_t esize = 16U << sz; const auto shift = static_cast(8U << sz); // 64-bit regions if (op == 0b00) { IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, reg_m, shift), ir.VectorLogicalShiftLeft(esize, reg_m, shift)); switch (sz) { case 0: // 8-bit elements result = ir.VectorShuffleLowHalfwords(result, 0b00011011); result = ir.VectorShuffleHighHalfwords(result, 0b00011011); break; case 1: // 16-bit elements result = ir.VectorShuffleLowHalfwords(result, 0b01001110); result = ir.VectorShuffleHighHalfwords(result, 0b01001110); break; } return result; } // 32-bit regions if (op == 0b01) { IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, reg_m, shift), ir.VectorLogicalShiftLeft(esize, reg_m, shift)); // If dealing with 8-bit elements we'll need to shuffle the bytes in each halfword // e.g. Assume the following numbers point out bytes in a 32-bit word, we're essentially // changing [3, 2, 1, 0] to [2, 3, 0, 1] if (sz == 0) { result = ir.VectorShuffleLowHalfwords(result, 0b10110001); result = ir.VectorShuffleHighHalfwords(result, 0b10110001); } return result; } // 16-bit regions return ir.VectorOr(ir.VectorLogicalShiftRight(esize, reg_m, 8), ir.VectorLogicalShiftLeft(esize, reg_m, 8)); }(); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VCLS(bool D, size_t sz, size_t Vd, bool Q, bool M, size_t Vm) { if (sz == 0b11) { return UndefinedInstruction(); } if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto result = [this, m, sz] { const auto reg_m = ir.GetVector(m); const size_t esize = 8U << sz; const auto shifted = ir.VectorArithmeticShiftRight(esize, reg_m, static_cast(esize)); const auto xored = ir.VectorEor(reg_m, shifted); const auto clz = ir.VectorCountLeadingZeros(esize, xored); return ir.VectorSub(esize, clz, ir.VectorBroadcast(esize, I(esize, 1))); }(); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VCLZ(bool D, size_t sz, size_t Vd, bool Q, bool M, size_t Vm) { if (sz == 0b11) { return UndefinedInstruction(); } if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto result = [this, m, sz] { const auto reg_m = ir.GetVector(m); const size_t esize = 8U << sz; return ir.VectorCountLeadingZeros(esize, reg_m); }(); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VCNT(bool D, size_t sz, size_t Vd, bool Q, bool M, size_t Vm) { if (sz != 0b00) { return UndefinedInstruction(); } if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto reg_m = ir.GetVector(m); const auto result = ir.VectorPopulationCount(reg_m); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VABS(bool D, size_t sz, size_t Vd, bool F, bool Q, bool M, size_t Vm) { if (sz == 0b11 || (F && sz != 0b10)) { return UndefinedInstruction(); } if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto result = [this, F, m, sz] { const auto reg_m = ir.GetVector(m); if (F) { return ir.FPVectorAbs(32, reg_m); } const size_t esize = 8U << sz; return ir.VectorAbs(esize, reg_m); }(); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VNEG(bool D, size_t sz, size_t Vd, bool F, bool Q, bool M, size_t Vm) { if (sz == 0b11 || (F && sz != 0b10)) { return UndefinedInstruction(); } if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); const auto result = [this, F, m, sz] { const auto reg_m = ir.GetVector(m); if (F) { return ir.FPVectorNeg(32, reg_m); } const size_t esize = 8U << sz; return ir.VectorSub(esize, ir.ZeroVector(), reg_m); }(); ir.SetVector(d, result); return true; } bool ArmTranslatorVisitor::asimd_VSWP(bool D, size_t Vd, bool Q, bool M, size_t Vm) { if (Q && (Common::Bit<0>(Vd) || Common::Bit<0>(Vm))) { return UndefinedInstruction(); } // Swapping the same register results in the same contents. const auto d = ToVector(Q, Vd, D); const auto m = ToVector(Q, Vm, M); if (d == m) { return true; } if (Q) { const auto reg_d = ir.GetVector(d); const auto reg_m = ir.GetVector(m); ir.SetVector(m, reg_d); ir.SetVector(d, reg_m); } else { const auto reg_d = ir.GetExtendedRegister(d); const auto reg_m = ir.GetExtendedRegister(m); ir.SetExtendedRegister(m, reg_d); ir.SetExtendedRegister(d, reg_m); } return true; } } // namespace Dynarmic::A32