dynarmic/src/frontend/A64/translate/impl/simd_two_register_misc.cpp
2020-04-22 20:46:16 +01:00

239 lines
7.1 KiB
C++

/* This file is part of the dynarmic project.
* Copyright (c) 2018 MerryMage
* This software may be used and distributed according to the terms of the GNU
* General Public License version 2 or any later version.
*/
#include "frontend/A64/translate/impl/impl.h"
namespace Dynarmic::A64 {
bool TranslatorVisitor::CNT(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (size != 0b00) {
return ReservedValue();
}
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = V(datasize, Vn);
const IR::U128 result = ir.VectorPopulationCount(operand);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::CMGE_zero_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (size == 0b11 && !Q) {
return ReservedValue();
}
const size_t esize = 8 << size.ZeroExtend();
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = V(datasize, Vn);
const IR::U128 zero = ir.ZeroVector();
IR::U128 result = ir.VectorGreaterEqualSigned(esize, operand, zero);
if (datasize == 64) {
result = ir.VectorZeroUpper(result);
}
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::CMGT_zero_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (size == 0b11 && !Q) {
return ReservedValue();
}
const size_t esize = 8 << size.ZeroExtend<size_t>();
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = V(datasize, Vn);
const IR::U128 zero = ir.ZeroVector();
const IR::U128 result = ir.VectorGreaterSigned(esize, operand, zero);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::CMEQ_zero_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (size == 0b11 && !Q) {
return ReservedValue();
}
const size_t esize = 8 << size.ZeroExtend<size_t>();
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = V(datasize, Vn);
const IR::U128 zero = ir.ZeroVector();
IR::U128 result = ir.VectorEqual(esize, operand, zero);
if (datasize == 64) {
result = ir.VectorZeroUpper(result);
}
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::ABS_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (!Q && size == 0b11) {
return ReservedValue();
}
const size_t datasize = Q ? 128 : 64;
const size_t esize = 8 << size.ZeroExtend();
const IR::U128 data = V(datasize, Vn);
const IR::U128 result = ir.VectorAbs(esize, data);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::CMLT_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (size == 0b11 && !Q) {
return ReservedValue();
}
const size_t esize = 8 << size.ZeroExtend<size_t>();
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = V(datasize, Vn);
const IR::U128 zero = ir.ZeroVector();
const IR::U128 result = ir.VectorLessSigned(esize, operand, zero);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::XTN(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (size == 0b11) {
return ReservedValue();
}
const size_t esize = 8 << size.ZeroExtend<size_t>();
const size_t datasize = 64;
const size_t part = Q ? 1 : 0;
const IR::U128 operand = V(2 * datasize, Vn);
const IR::U128 result = ir.VectorNarrow(2 * esize, operand);
Vpart(datasize, Vd, part, result);
return true;
}
bool TranslatorVisitor::NEG_2(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (size == 0b11 && !Q) {
return ReservedValue();
}
const size_t esize = 8 << size.ZeroExtend<size_t>();
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = V(datasize, Vn);
const IR::U128 zero = ir.ZeroVector();
const IR::U128 result = ir.VectorSub(esize, zero, operand);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::NOT(bool Q, Vec Vn, Vec Vd) {
const size_t datasize = Q ? 128 : 64;
const IR::U128 operand = V(datasize, Vn);
IR::U128 result = ir.VectorNot(operand);
if (datasize == 64) {
result = ir.VectorZeroUpper(result);
}
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::RBIT_asimd(bool Q, Vec Vn, Vec Vd) {
const size_t datasize = Q ? 128 : 64;
const IR::U128 data = V(datasize, Vn);
const IR::U128 result = ir.VectorReverseBits(data);
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::REV16_asimd(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
if (size != 0) {
return UnallocatedEncoding();
}
const size_t datasize = Q ? 128 : 64;
constexpr size_t esize = 16;
const IR::U128 data = V(datasize, Vn);
const IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, data, 8),
ir.VectorLogicalShiftLeft(esize, data, 8));
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::REV32_asimd(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
const u32 zext_size = size.ZeroExtend();
if (zext_size > 1) {
return UnallocatedEncoding();
}
const size_t datasize = Q ? 128 : 64;
const size_t esize = 16 << zext_size;
const u8 shift = static_cast<u8>(8 << zext_size);
const IR::U128 data = V(datasize, Vn);
// TODO: Consider factoring byte swapping code out into its own opcode.
// Technically the rest of the following code can be a PSHUFB
// in the presence of SSSE3.
IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, data, shift),
ir.VectorLogicalShiftLeft(esize, data, shift));
// If dealing with 8-bit elements we'll need to shuffle the bytes in each halfword
// e.g. Assume the following numbers point out bytes in a 32-bit word, we're essentially
// changing [3, 2, 1, 0] to [2, 3, 0, 1]
if (zext_size == 0) {
result = ir.VectorShuffleLowHalfwords(result, 0b10110001);
result = ir.VectorShuffleHighHalfwords(result, 0b10110001);
}
V(datasize, Vd, result);
return true;
}
bool TranslatorVisitor::REV64_asimd(bool Q, Imm<2> size, Vec Vn, Vec Vd) {
const u32 zext_size = size.ZeroExtend();
if (zext_size >= 3) {
return UnallocatedEncoding();
}
const size_t datasize = Q ? 128 : 64;
const size_t esize = 16 << zext_size;
const u8 shift = static_cast<u8>(8 << zext_size);
const IR::U128 data = V(datasize, Vn);
// TODO: Consider factoring byte swapping code out into its own opcode.
// Technically the rest of the following code can be a PSHUFB
// in the presence of SSSE3.
IR::U128 result = ir.VectorOr(ir.VectorLogicalShiftRight(esize, data, shift),
ir.VectorLogicalShiftLeft(esize, data, shift));
switch (zext_size) {
case 0: // 8-bit elements
result = ir.VectorShuffleLowHalfwords(result, 0b00011011);
result = ir.VectorShuffleHighHalfwords(result, 0b00011011);
break;
case 1: // 16-bit elements
result = ir.VectorShuffleLowHalfwords(result, 0b01001110);
result = ir.VectorShuffleHighHalfwords(result, 0b01001110);
break;
}
V(datasize, Vd, result);
return true;
}
} // namespace Dynarmic::A64