Project Andio

This commit is contained in:
Kelebek1
2022-07-16 23:48:45 +01:00
parent 6e36f4d230
commit 458da8a948
270 changed files with 33712 additions and 8445 deletions

View File

@@ -0,0 +1,207 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "audio_core/renderer/adsp/command_list_processor.h"
#include "audio_core/renderer/command/effect/aux_.h"
#include "audio_core/renderer/effect/aux_.h"
#include "core/memory.h"
namespace AudioCore::AudioRenderer {
/**
* Reset an AuxBuffer.
*
* @param memory - Core memory for writing.
* @param aux_info - Memory address pointing to the AuxInfo to reset.
*/
static void ResetAuxBufferDsp(Core::Memory::Memory& memory, const CpuAddr aux_info) {
if (aux_info == 0) {
LOG_ERROR(Service_Audio, "Aux info is 0!");
return;
}
auto info{reinterpret_cast<AuxInfo::AuxInfoDsp*>(memory.GetPointer(aux_info))};
info->read_offset = 0;
info->write_offset = 0;
info->total_sample_count = 0;
}
/**
* Write the given input mix buffer to the memory at send_buffer, and update send_info_ if
* update_count is set, to notify the game that an update happened.
*
* @param memory - Core memory for writing.
* @param send_info_ - Meta information for where to write the mix buffer.
* @param sample_count - Unused.
* @param send_buffer - Memory address to write the mix buffer to.
* @param count_max - Maximum number of samples in the receiving buffer.
* @param input - Input mix buffer to write.
* @param write_count_ - Number of samples to write.
* @param write_offset - Current offset to begin writing the receiving buffer at.
* @param update_count - If non-zero, send_info_ will be updated.
* @return Number of samples written.
*/
static u32 WriteAuxBufferDsp(Core::Memory::Memory& memory, const CpuAddr send_info_,
[[maybe_unused]] u32 sample_count, const CpuAddr send_buffer,
const u32 count_max, std::span<const s32> input,
const u32 write_count_, const u32 write_offset,
const u32 update_count) {
if (write_count_ > count_max) {
LOG_ERROR(Service_Audio,
"write_count must be smaller than count_max! write_count {}, count_max {}",
write_count_, count_max);
return 0;
}
if (input.empty()) {
LOG_ERROR(Service_Audio, "input buffer is empty!");
return 0;
}
if (send_buffer == 0) {
LOG_ERROR(Service_Audio, "send_buffer is 0!");
return 0;
}
if (count_max == 0) {
return 0;
}
AuxInfo::AuxInfoDsp send_info{};
memory.ReadBlockUnsafe(send_info_, &send_info, sizeof(AuxInfo::AuxInfoDsp));
u32 target_write_offset{send_info.write_offset + write_offset};
if (target_write_offset > count_max || write_count_ == 0) {
return 0;
}
u32 write_count{write_count_};
u32 write_pos{0};
while (write_count > 0) {
u32 to_write{std::min(count_max - target_write_offset, write_count)};
if (to_write > 0) {
memory.WriteBlockUnsafe(send_buffer + target_write_offset * sizeof(s32),
&input[write_pos], to_write * sizeof(s32));
}
target_write_offset = (target_write_offset + to_write) % count_max;
write_count -= to_write;
write_pos += to_write;
}
if (update_count) {
send_info.write_offset = (send_info.write_offset + update_count) % count_max;
}
memory.WriteBlockUnsafe(send_info_, &send_info, sizeof(AuxInfo::AuxInfoDsp));
return write_count_;
}
/**
* Read the given memory at return_buffer into the output mix buffer, and update return_info_ if
* update_count is set, to notify the game that an update happened.
*
* @param memory - Core memory for writing.
* @param return_info_ - Meta information for where to read the mix buffer.
* @param return_buffer - Memory address to read the samples from.
* @param count_max - Maximum number of samples in the receiving buffer.
* @param output - Output mix buffer which will receive the samples.
* @param count_ - Number of samples to read.
* @param read_offset - Current offset to begin reading the return_buffer at.
* @param update_count - If non-zero, send_info_ will be updated.
* @return Number of samples read.
*/
static u32 ReadAuxBufferDsp(Core::Memory::Memory& memory, const CpuAddr return_info_,
const CpuAddr return_buffer, const u32 count_max, std::span<s32> output,
const u32 count_, const u32 read_offset, const u32 update_count) {
if (count_max == 0) {
return 0;
}
if (count_ > count_max) {
LOG_ERROR(Service_Audio, "count must be smaller than count_max! count {}, count_max {}",
count_, count_max);
return 0;
}
if (output.empty()) {
LOG_ERROR(Service_Audio, "output buffer is empty!");
return 0;
}
if (return_buffer == 0) {
LOG_ERROR(Service_Audio, "return_buffer is 0!");
return 0;
}
AuxInfo::AuxInfoDsp return_info{};
memory.ReadBlockUnsafe(return_info_, &return_info, sizeof(AuxInfo::AuxInfoDsp));
u32 target_read_offset{return_info.read_offset + read_offset};
if (target_read_offset > count_max) {
return 0;
}
u32 read_count{count_};
u32 read_pos{0};
while (read_count > 0) {
u32 to_read{std::min(count_max - target_read_offset, read_count)};
if (to_read > 0) {
memory.ReadBlockUnsafe(return_buffer + target_read_offset * sizeof(s32),
&output[read_pos], to_read * sizeof(s32));
}
target_read_offset = (target_read_offset + to_read) % count_max;
read_count -= to_read;
read_pos += to_read;
}
if (update_count) {
return_info.read_offset = (return_info.read_offset + update_count) % count_max;
}
memory.WriteBlockUnsafe(return_info_, &return_info, sizeof(AuxInfo::AuxInfoDsp));
return count_;
}
void AuxCommand::Dump([[maybe_unused]] const ADSP::CommandListProcessor& processor,
std::string& string) {
string += fmt::format("AuxCommand\n\tenabled {} input {:02X} output {:02X}\n", effect_enabled,
input, output);
}
void AuxCommand::Process(const ADSP::CommandListProcessor& processor) {
auto input_buffer{
processor.mix_buffers.subspan(input * processor.sample_count, processor.sample_count)};
auto output_buffer{
processor.mix_buffers.subspan(output * processor.sample_count, processor.sample_count)};
if (effect_enabled) {
WriteAuxBufferDsp(*processor.memory, send_buffer_info, processor.sample_count, send_buffer,
count_max, input_buffer, processor.sample_count, write_offset,
update_count);
auto read{ReadAuxBufferDsp(*processor.memory, return_buffer_info, return_buffer, count_max,
output_buffer, processor.sample_count, write_offset,
update_count)};
if (read != processor.sample_count) {
std::memset(&output_buffer[read], 0, processor.sample_count - read);
}
} else {
ResetAuxBufferDsp(*processor.memory, send_buffer_info);
ResetAuxBufferDsp(*processor.memory, return_buffer_info);
if (input != output) {
std::memcpy(output_buffer.data(), input_buffer.data(), output_buffer.size_bytes());
}
}
}
bool AuxCommand::Verify(const ADSP::CommandListProcessor& processor) {
return true;
}
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,66 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <string>
#include "audio_core/renderer/command/icommand.h"
#include "common/common_types.h"
namespace AudioCore::AudioRenderer {
namespace ADSP {
class CommandListProcessor;
}
/**
* AudioRenderer command to read and write an auxiliary buffer, writing the input mix buffer to game
* memory, and reading into the output buffer from game memory.
*/
struct AuxCommand : ICommand {
/**
* Print this command's information to a string.
*
* @param processor - The CommandListProcessor processing this command.
* @param string - The string to print into.
*/
void Dump(const ADSP::CommandListProcessor& processor, std::string& string) override;
/**
* Process this command.
*
* @param processor - The CommandListProcessor processing this command.
*/
void Process(const ADSP::CommandListProcessor& processor) override;
/**
* Verify this command's data is valid.
*
* @param processor - The CommandListProcessor processing this command.
* @return True if the command is valid, otherwise false.
*/
bool Verify(const ADSP::CommandListProcessor& processor) override;
/// Input mix buffer index
s16 input;
/// Output mix buffer index
s16 output;
/// Meta info for writing
CpuAddr send_buffer_info;
/// Meta info for reading
CpuAddr return_buffer_info;
/// Game memory write buffer
CpuAddr send_buffer;
/// Game memory read buffer
CpuAddr return_buffer;
/// Max samples to read/write
u32 count_max;
/// Current read/write offset
u32 write_offset;
/// Number of samples to update per call
u32 update_count;
/// is this effect enabled?
bool effect_enabled;
};
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,118 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "audio_core/renderer/adsp/command_list_processor.h"
#include "audio_core/renderer/command/effect/biquad_filter.h"
#include "audio_core/renderer/voice/voice_state.h"
namespace AudioCore::AudioRenderer {
/**
* Biquad filter float implementation.
*
* @param output - Output container for filtered samples.
* @param input - Input container for samples to be filtered.
* @param b - Feedforward coefficients.
* @param a - Feedback coefficients.
* @param state - State to track previous samples between calls.
* @param sample_count - Number of samples to process.
*/
void ApplyBiquadFilterFloat(std::span<s32> output, std::span<const s32> input,
std::array<s16, 3>& b_, std::array<s16, 2>& a_,
VoiceState::BiquadFilterState& state, const u32 sample_count) {
constexpr s64 min{std::numeric_limits<s32>::min()};
constexpr s64 max{std::numeric_limits<s32>::max()};
std::array<f64, 3> b{Common::FixedPoint<50, 14>::from_base(b_[0]).to_double(),
Common::FixedPoint<50, 14>::from_base(b_[1]).to_double(),
Common::FixedPoint<50, 14>::from_base(b_[2]).to_double()};
std::array<f64, 2> a{Common::FixedPoint<50, 14>::from_base(a_[0]).to_double(),
Common::FixedPoint<50, 14>::from_base(a_[1]).to_double()};
std::array<f64, 4> s{state.s0.to_double(), state.s1.to_double(), state.s2.to_double(),
state.s3.to_double()};
for (u32 i = 0; i < sample_count; i++) {
f64 in_sample{static_cast<f64>(input[i])};
auto sample{in_sample * b[0] + s[0] * b[1] + s[1] * b[2] + s[2] * a[0] + s[3] * a[1]};
output[i] = static_cast<s32>(std::clamp(static_cast<s64>(sample), min, max));
s[1] = s[0];
s[0] = in_sample;
s[3] = s[2];
s[2] = sample;
}
state.s0 = s[0];
state.s1 = s[1];
state.s2 = s[2];
state.s3 = s[3];
}
/**
* Biquad filter s32 implementation.
*
* @param output - Output container for filtered samples.
* @param input - Input container for samples to be filtered.
* @param b - Feedforward coefficients.
* @param a - Feedback coefficients.
* @param state - State to track previous samples between calls.
* @param sample_count - Number of samples to process.
*/
static void ApplyBiquadFilterInt(std::span<s32> output, std::span<const s32> input,
std::array<s16, 3>& b_, std::array<s16, 2>& a_,
VoiceState::BiquadFilterState& state, const u32 sample_count) {
constexpr s64 min{std::numeric_limits<s32>::min()};
constexpr s64 max{std::numeric_limits<s32>::max()};
std::array<Common::FixedPoint<50, 14>, 3> b{
Common::FixedPoint<50, 14>::from_base(b_[0]),
Common::FixedPoint<50, 14>::from_base(b_[1]),
Common::FixedPoint<50, 14>::from_base(b_[2]),
};
std::array<Common::FixedPoint<50, 14>, 3> a{
Common::FixedPoint<50, 14>::from_base(a_[0]),
Common::FixedPoint<50, 14>::from_base(a_[1]),
};
for (u32 i = 0; i < sample_count; i++) {
s64 in_sample{input[i]};
auto sample{in_sample * b[0] + state.s0};
const auto out_sample{std::clamp(sample.to_long(), min, max)};
output[i] = static_cast<s32>(out_sample);
state.s0 = state.s1 + b[1] * in_sample + a[0] * out_sample;
state.s1 = 0 + b[2] * in_sample + a[1] * out_sample;
}
}
void BiquadFilterCommand::Dump([[maybe_unused]] const ADSP::CommandListProcessor& processor,
std::string& string) {
string += fmt::format(
"BiquadFilterCommand\n\tinput {:02X} output {:02X} needs_init {} use_float_processing {}\n",
input, output, needs_init, use_float_processing);
}
void BiquadFilterCommand::Process(const ADSP::CommandListProcessor& processor) {
auto state_{reinterpret_cast<VoiceState::BiquadFilterState*>(state)};
if (needs_init) {
std::memset(state_, 0, sizeof(VoiceState::BiquadFilterState));
}
auto input_buffer{
processor.mix_buffers.subspan(input * processor.sample_count, processor.sample_count)};
auto output_buffer{
processor.mix_buffers.subspan(output * processor.sample_count, processor.sample_count)};
if (use_float_processing) {
ApplyBiquadFilterFloat(output_buffer, input_buffer, biquad.b, biquad.a, *state_,
processor.sample_count);
} else {
ApplyBiquadFilterInt(output_buffer, input_buffer, biquad.b, biquad.a, *state_,
processor.sample_count);
}
}
bool BiquadFilterCommand::Verify(const ADSP::CommandListProcessor& processor) {
return true;
}
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,74 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <string>
#include "audio_core/renderer/command/icommand.h"
#include "audio_core/renderer/voice/voice_info.h"
#include "audio_core/renderer/voice/voice_state.h"
#include "common/common_types.h"
namespace AudioCore::AudioRenderer {
namespace ADSP {
class CommandListProcessor;
}
/**
* AudioRenderer command for applying a biquad filter to the input mix buffer, saving the results to
* the output mix buffer.
*/
struct BiquadFilterCommand : ICommand {
/**
* Print this command's information to a string.
*
* @param processor - The CommandListProcessor processing this command.
* @param string - The string to print into.
*/
void Dump(const ADSP::CommandListProcessor& processor, std::string& string) override;
/**
* Process this command.
*
* @param processor - The CommandListProcessor processing this command.
*/
void Process(const ADSP::CommandListProcessor& processor) override;
/**
* Verify this command's data is valid.
*
* @param processor - The CommandListProcessor processing this command.
* @return True if the command is valid, otherwise false.
*/
bool Verify(const ADSP::CommandListProcessor& processor) override;
/// Input mix buffer index
s16 input;
/// Output mix buffer index
s16 output;
/// Input parameters for biquad
VoiceInfo::BiquadFilterParameter biquad;
/// Biquad state, updated each call
CpuAddr state;
/// If true, reset the state
bool needs_init;
/// If true, use float processing rather than int
bool use_float_processing;
};
/**
* Biquad filter float implementation.
*
* @param output - Output container for filtered samples.
* @param input - Input container for samples to be filtered.
* @param b - Feedforward coefficients.
* @param a - Feedback coefficients.
* @param state - State to track previous samples.
* @param sample_count - Number of samples to process.
*/
void ApplyBiquadFilterFloat(std::span<s32> output, std::span<const s32> input,
std::array<s16, 3>& b, std::array<s16, 2>& a,
VoiceState::BiquadFilterState& state, const u32 sample_count);
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,142 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "audio_core/renderer/adsp/command_list_processor.h"
#include "audio_core/renderer/command/effect/capture.h"
#include "audio_core/renderer/effect/aux_.h"
#include "core/memory.h"
namespace AudioCore::AudioRenderer {
/**
* Reset an AuxBuffer.
*
* @param memory - Core memory for writing.
* @param aux_info - Memory address pointing to the AuxInfo to reset.
*/
static void ResetAuxBufferDsp(Core::Memory::Memory& memory, const CpuAddr aux_info) {
if (aux_info == 0) {
LOG_ERROR(Service_Audio, "Aux info is 0!");
return;
}
memory.Write32(VAddr(aux_info + offsetof(AuxInfo::AuxInfoDsp, read_offset)), 0);
memory.Write32(VAddr(aux_info + offsetof(AuxInfo::AuxInfoDsp, write_offset)), 0);
memory.Write32(VAddr(aux_info + offsetof(AuxInfo::AuxInfoDsp, total_sample_count)), 0);
}
/**
* Write the given input mix buffer to the memory at send_buffer, and update send_info_ if
* update_count is set, to notify the game that an update happened.
*
* @param memory - Core memory for writing.
* @param send_info_ - Header information for where to write the mix buffer.
* @param send_buffer - Memory address to write the mix buffer to.
* @param count_max - Maximum number of samples in the receiving buffer.
* @param input - Input mix buffer to write.
* @param write_count_ - Number of samples to write.
* @param write_offset - Current offset to begin writing the receiving buffer at.
* @param update_count - If non-zero, send_info_ will be updated.
* @return Number of samples written.
*/
static u32 WriteAuxBufferDsp(Core::Memory::Memory& memory, const CpuAddr send_info_,
const CpuAddr send_buffer, u32 count_max, std::span<const s32> input,
const u32 write_count_, const u32 write_offset,
const u32 update_count) {
if (write_count_ > count_max) {
LOG_ERROR(Service_Audio,
"write_count must be smaller than count_max! write_count {}, count_max {}",
write_count_, count_max);
return 0;
}
if (send_info_ == 0) {
LOG_ERROR(Service_Audio, "send_info is 0!");
return 0;
}
if (input.empty()) {
LOG_ERROR(Service_Audio, "input buffer is empty!");
return 0;
}
if (send_buffer == 0) {
LOG_ERROR(Service_Audio, "send_buffer is 0!");
return 0;
}
if (count_max == 0) {
return 0;
}
AuxInfo::AuxBufferInfo send_info{};
memory.ReadBlockUnsafe(send_info_, &send_info, sizeof(AuxInfo::AuxBufferInfo));
u32 target_write_offset{send_info.dsp_info.write_offset + write_offset};
if (target_write_offset > count_max || write_count_ == 0) {
return 0;
}
u32 write_count{write_count_};
u32 write_pos{0};
while (write_count > 0) {
u32 to_write{std::min(count_max - target_write_offset, write_count)};
if (to_write > 0) {
memory.WriteBlockUnsafe(send_buffer + target_write_offset * sizeof(s32),
&input[write_pos], to_write * sizeof(s32));
}
target_write_offset = (target_write_offset + to_write) % count_max;
write_count -= to_write;
write_pos += to_write;
}
if (update_count) {
const auto count_diff{send_info.dsp_info.total_sample_count -
send_info.cpu_info.total_sample_count};
if (count_diff >= count_max) {
auto dsp_lost_count{send_info.dsp_info.lost_sample_count + update_count};
if (dsp_lost_count - send_info.cpu_info.lost_sample_count <
send_info.dsp_info.lost_sample_count - send_info.cpu_info.lost_sample_count) {
dsp_lost_count = send_info.cpu_info.lost_sample_count - 1;
}
send_info.dsp_info.lost_sample_count = dsp_lost_count;
}
send_info.dsp_info.write_offset =
(send_info.dsp_info.write_offset + update_count + count_max) % count_max;
auto new_sample_count{send_info.dsp_info.total_sample_count + update_count};
if (new_sample_count - send_info.cpu_info.total_sample_count < count_diff) {
new_sample_count = send_info.cpu_info.total_sample_count - 1;
}
send_info.dsp_info.total_sample_count = new_sample_count;
}
memory.WriteBlockUnsafe(send_info_, &send_info, sizeof(AuxInfo::AuxBufferInfo));
return write_count_;
}
void CaptureCommand::Dump([[maybe_unused]] const ADSP::CommandListProcessor& processor,
std::string& string) {
string += fmt::format("CaptureCommand\n\tenabled {} input {:02X} output {:02X}", effect_enabled,
input, output);
}
void CaptureCommand::Process(const ADSP::CommandListProcessor& processor) {
if (effect_enabled) {
auto input_buffer{
processor.mix_buffers.subspan(input * processor.sample_count, processor.sample_count)};
WriteAuxBufferDsp(*processor.memory, send_buffer_info, send_buffer, count_max, input_buffer,
processor.sample_count, write_offset, update_count);
} else {
ResetAuxBufferDsp(*processor.memory, send_buffer_info);
}
}
bool CaptureCommand::Verify(const ADSP::CommandListProcessor& processor) {
return true;
}
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,62 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <string>
#include "audio_core/renderer/command/icommand.h"
#include "common/common_types.h"
namespace AudioCore::AudioRenderer {
namespace ADSP {
class CommandListProcessor;
}
/**
* AudioRenderer command for capturing a mix buffer. That is, writing it back to a given game memory
* address.
*/
struct CaptureCommand : ICommand {
/**
* Print this command's information to a string.
*
* @param processor - The CommandListProcessor processing this command.
* @param string - The string to print into.
*/
void Dump(const ADSP::CommandListProcessor& processor, std::string& string) override;
/**
* Process this command.
*
* @param processor - The CommandListProcessor processing this command.
*/
void Process(const ADSP::CommandListProcessor& processor) override;
/**
* Verify this command's data is valid.
*
* @param processor - The CommandListProcessor processing this command.
* @return True if the command is valid, otherwise false.
*/
bool Verify(const ADSP::CommandListProcessor& processor) override;
/// Input mix buffer index
s16 input;
/// Output mix buffer index
s16 output;
/// Meta info for writing
CpuAddr send_buffer_info;
/// Game memory write buffer
CpuAddr send_buffer;
/// Max samples to read/write
u32 count_max;
/// Current read/write offset
u32 write_offset;
/// Number of samples to update per call
u32 update_count;
/// is this effect enabled?
bool effect_enabled;
};
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,156 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <cmath>
#include <span>
#include <vector>
#include "audio_core/renderer/adsp/command_list_processor.h"
#include "audio_core/renderer/command/effect/compressor.h"
#include "audio_core/renderer/effect/compressor.h"
namespace AudioCore::AudioRenderer {
static void SetCompressorEffectParameter(CompressorInfo::ParameterVersion2& params,
CompressorInfo::State& state) {
const auto ratio{1.0f / params.compressor_ratio};
auto makeup_gain{0.0f};
if (params.makeup_gain_enabled) {
makeup_gain = (params.threshold * 0.5f) * (ratio - 1.0f) - 3.0f;
}
state.makeup_gain = makeup_gain;
state.unk_18 = params.unk_28;
const auto a{(params.out_gain + makeup_gain) / 20.0f * 3.3219f};
const auto b{(a - std::trunc(a)) * 0.69315f};
const auto c{std::pow(2.0f, b)};
state.unk_0C = (1.0f - ratio) / 6.0f;
state.unk_14 = params.threshold + 1.5f;
state.unk_10 = params.threshold - 1.5f;
state.unk_20 = c;
}
static void InitializeCompressorEffect(CompressorInfo::ParameterVersion2& params,
CompressorInfo::State& state) {
std::memset(&state, 0, sizeof(CompressorInfo::State));
state.unk_00 = 0;
state.unk_04 = 1.0f;
state.unk_08 = 1.0f;
SetCompressorEffectParameter(params, state);
}
static void ApplyCompressorEffect(CompressorInfo::ParameterVersion2& params,
CompressorInfo::State& state, bool enabled,
std::vector<std::span<const s32>> input_buffers,
std::vector<std::span<s32>> output_buffers, u32 sample_count) {
if (enabled) {
auto state_00{state.unk_00};
auto state_04{state.unk_04};
auto state_08{state.unk_08};
auto state_18{state.unk_18};
for (u32 i = 0; i < sample_count; i++) {
auto a{0.0f};
for (s16 channel = 0; channel < params.channel_count; channel++) {
const auto input_sample{Common::FixedPoint<49, 15>(input_buffers[channel][i])};
a += (input_sample * input_sample).to_float();
}
state_00 += params.unk_24 * ((a / params.channel_count) - state.unk_00);
auto b{-100.0f};
auto c{0.0f};
if (state_00 >= 1.0e-10) {
b = std::log10(state_00) * 10.0f;
c = 1.0f;
}
if (b >= state.unk_10) {
const auto d{b >= state.unk_14
? ((1.0f / params.compressor_ratio) - 1.0f) *
(b - params.threshold)
: (b - state.unk_10) * (b - state.unk_10) * -state.unk_0C};
const auto e{d / 20.0f * 3.3219f};
const auto f{(e - std::trunc(e)) * 0.69315f};
c = std::pow(2.0f, f);
}
state_18 = params.unk_28;
auto tmp{c};
if ((state_04 - c) <= 0.08f) {
state_18 = params.unk_2C;
if (((state_04 - c) >= -0.08f) && (std::abs(state_08 - c) >= 0.001f)) {
tmp = state_04;
}
}
state_04 = tmp;
state_08 += (c - state_08) * state_18;
for (s16 channel = 0; channel < params.channel_count; channel++) {
output_buffers[channel][i] = static_cast<s32>(
static_cast<f32>(input_buffers[channel][i]) * state_08 * state.unk_20);
}
}
state.unk_00 = state_00;
state.unk_04 = state_04;
state.unk_08 = state_08;
state.unk_18 = state_18;
} else {
for (s16 channel = 0; channel < params.channel_count; channel++) {
if (params.inputs[channel] != params.outputs[channel]) {
std::memcpy((char*)output_buffers[channel].data(),
(char*)input_buffers[channel].data(),
output_buffers[channel].size_bytes());
}
}
}
}
void CompressorCommand::Dump([[maybe_unused]] const ADSP::CommandListProcessor& processor,
std::string& string) {
string += fmt::format("CompressorCommand\n\tenabled {} \n\tinputs: ", effect_enabled);
for (s16 i = 0; i < parameter.channel_count; i++) {
string += fmt::format("{:02X}, ", inputs[i]);
}
string += "\n\toutputs: ";
for (s16 i = 0; i < parameter.channel_count; i++) {
string += fmt::format("{:02X}, ", outputs[i]);
}
string += "\n";
}
void CompressorCommand::Process(const ADSP::CommandListProcessor& processor) {
std::vector<std::span<const s32>> input_buffers(parameter.channel_count);
std::vector<std::span<s32>> output_buffers(parameter.channel_count);
for (s16 i = 0; i < parameter.channel_count; i++) {
input_buffers[i] = processor.mix_buffers.subspan(inputs[i] * processor.sample_count,
processor.sample_count);
output_buffers[i] = processor.mix_buffers.subspan(outputs[i] * processor.sample_count,
processor.sample_count);
}
auto state_{reinterpret_cast<CompressorInfo::State*>(state)};
if (effect_enabled) {
if (parameter.state == CompressorInfo::ParameterState::Updating) {
SetCompressorEffectParameter(parameter, *state_);
} else if (parameter.state == CompressorInfo::ParameterState::Initialized) {
InitializeCompressorEffect(parameter, *state_);
}
}
ApplyCompressorEffect(parameter, *state_, effect_enabled, input_buffers, output_buffers,
processor.sample_count);
}
bool CompressorCommand::Verify(const ADSP::CommandListProcessor& processor) {
return true;
}
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,60 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <string>
#include "audio_core/renderer/command/icommand.h"
#include "audio_core/renderer/effect/compressor.h"
#include "common/common_types.h"
namespace AudioCore::AudioRenderer {
namespace ADSP {
class CommandListProcessor;
}
/**
* AudioRenderer command for limiting volume between a high and low threshold.
* Version 1.
*/
struct CompressorCommand : ICommand {
/**
* Print this command's information to a string.
*
* @param processor - The CommandListProcessor processing this command.
* @param string - The string to print into.
*/
void Dump(const ADSP::CommandListProcessor& processor, std::string& string) override;
/**
* Process this command.
*
* @param processor - The CommandListProcessor processing this command.
*/
void Process(const ADSP::CommandListProcessor& processor) override;
/**
* Verify this command's data is valid.
*
* @param processor - The CommandListProcessor processing this command.
* @return True if the command is valid, otherwise false.
*/
bool Verify(const ADSP::CommandListProcessor& processor) override;
/// Input mix buffer offsets for each channel
std::array<s16, MaxChannels> inputs;
/// Output mix buffer offsets for each channel
std::array<s16, MaxChannels> outputs;
/// Input parameters
CompressorInfo::ParameterVersion2 parameter;
/// State, updated each call
CpuAddr state;
/// Game-supplied workbuffer (Unused)
CpuAddr workbuffer;
/// Is this effect enabled?
bool effect_enabled;
};
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,238 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "audio_core/renderer/adsp/command_list_processor.h"
#include "audio_core/renderer/command/effect/delay.h"
namespace AudioCore::AudioRenderer {
/**
* Update the DelayInfo state according to the given parameters.
*
* @param params - Input parameters to update the state.
* @param state - State to be updated.
*/
static void SetDelayEffectParameter(const DelayInfo::ParameterVersion1& params,
DelayInfo::State& state) {
auto channel_spread{params.channel_spread};
state.feedback_gain = params.feedback_gain * 0.97998046875f;
state.delay_feedback_gain = state.feedback_gain * (1.0f - channel_spread);
if (params.channel_count == 4 || params.channel_count == 6) {
channel_spread >>= 1;
}
state.delay_feedback_cross_gain = channel_spread * state.feedback_gain;
state.lowpass_feedback_gain = params.lowpass_amount * 0.949951171875f;
state.lowpass_gain = 1.0f - state.lowpass_feedback_gain;
}
/**
* Initialize a new DelayInfo state according to the given parameters.
*
* @param params - Input parameters to update the state.
* @param state - State to be updated.
* @param workbuffer - Game-supplied memory for the state. (Unused)
*/
static void InitializeDelayEffect(const DelayInfo::ParameterVersion1& params,
DelayInfo::State& state,
[[maybe_unused]] const CpuAddr workbuffer) {
state = {};
for (u32 channel = 0; channel < params.channel_count; channel++) {
Common::FixedPoint<32, 32> sample_count_max{0.064f};
sample_count_max *= params.sample_rate.to_int_floor() * params.delay_time_max;
Common::FixedPoint<18, 14> delay_time{params.delay_time};
delay_time *= params.sample_rate / 1000;
Common::FixedPoint<32, 32> sample_count{delay_time};
if (sample_count > sample_count_max) {
sample_count = sample_count_max;
}
state.delay_lines[channel].sample_count_max = sample_count_max.to_int_floor();
state.delay_lines[channel].sample_count = sample_count.to_int_floor();
state.delay_lines[channel].buffer.resize(state.delay_lines[channel].sample_count, 0);
if (state.delay_lines[channel].buffer.size() == 0) {
state.delay_lines[channel].buffer.push_back(0);
}
state.delay_lines[channel].buffer_pos = 0;
state.delay_lines[channel].decay_rate = 1.0f;
}
SetDelayEffectParameter(params, state);
}
/**
* Delay effect impl, according to the parameters and current state, on the input mix buffers,
* saving the results to the output mix buffers.
*
* @tparam NumChannels - Number of channels to process. 1-6.
* @param params - Input parameters to use.
* @param state - State to use, must be initialized (see InitializeDelayEffect).
* @param inputs - Input mix buffers to performan the delay on.
* @param outputs - Output mix buffers to receive the delayed samples.
* @param sample_count - Number of samples to process.
*/
template <size_t NumChannels>
static void ApplyDelay(const DelayInfo::ParameterVersion1& params, DelayInfo::State& state,
std::vector<std::span<const s32>>& inputs,
std::vector<std::span<s32>>& outputs, const u32 sample_count) {
for (u32 sample_index = 0; sample_index < sample_count; sample_index++) {
std::array<Common::FixedPoint<50, 14>, NumChannels> input_samples{};
for (u32 channel = 0; channel < NumChannels; channel++) {
input_samples[channel] = inputs[channel][sample_index] * 64;
}
std::array<Common::FixedPoint<50, 14>, NumChannels> delay_samples{};
for (u32 channel = 0; channel < NumChannels; channel++) {
delay_samples[channel] = state.delay_lines[channel].Read();
}
// clang-format off
std::array<std::array<Common::FixedPoint<18, 14>, NumChannels>, NumChannels> matrix{};
if constexpr (NumChannels == 1) {
matrix = {{
{state.feedback_gain},
}};
} else if constexpr (NumChannels == 2) {
matrix = {{
{state.delay_feedback_gain, state.delay_feedback_cross_gain},
{state.delay_feedback_cross_gain, state.delay_feedback_gain},
}};
} else if constexpr (NumChannels == 4) {
matrix = {{
{state.delay_feedback_gain, state.delay_feedback_cross_gain, state.delay_feedback_cross_gain, 0.0f},
{state.delay_feedback_cross_gain, state.delay_feedback_gain, 0.0f, state.delay_feedback_cross_gain},
{state.delay_feedback_cross_gain, 0.0f, state.delay_feedback_gain, state.delay_feedback_cross_gain},
{0.0f, state.delay_feedback_cross_gain, state.delay_feedback_cross_gain, state.delay_feedback_gain},
}};
} else if constexpr (NumChannels == 6) {
matrix = {{
{state.delay_feedback_gain, 0.0f, state.delay_feedback_cross_gain, 0.0f, state.delay_feedback_cross_gain, 0.0f},
{0.0f, state.delay_feedback_gain, state.delay_feedback_cross_gain, 0.0f, 0.0f, state.delay_feedback_cross_gain},
{state.delay_feedback_cross_gain, state.delay_feedback_cross_gain, state.delay_feedback_gain, 0.0f, 0.0f, 0.0f},
{0.0f, 0.0f, 0.0f, params.feedback_gain, 0.0f, 0.0f},
{state.delay_feedback_cross_gain, 0.0f, 0.0f, 0.0f, state.delay_feedback_gain, state.delay_feedback_cross_gain},
{0.0f, state.delay_feedback_cross_gain, 0.0f, 0.0f, state.delay_feedback_cross_gain, state.delay_feedback_gain},
}};
}
// clang-format on
std::array<Common::FixedPoint<50, 14>, NumChannels> gained_samples{};
for (u32 channel = 0; channel < NumChannels; channel++) {
Common::FixedPoint<50, 14> delay{};
for (u32 j = 0; j < NumChannels; j++) {
delay += delay_samples[j] * matrix[j][channel];
}
gained_samples[channel] = input_samples[channel] * params.in_gain + delay;
}
for (u32 channel = 0; channel < NumChannels; channel++) {
state.lowpass_z[channel] = gained_samples[channel] * state.lowpass_gain +
state.lowpass_z[channel] * state.lowpass_feedback_gain;
state.delay_lines[channel].Write(state.lowpass_z[channel]);
}
for (u32 channel = 0; channel < NumChannels; channel++) {
outputs[channel][sample_index] = (input_samples[channel] * params.dry_gain +
delay_samples[channel] * params.wet_gain)
.to_int_floor() /
64;
}
}
}
/**
* Apply a delay effect if enabled, according to the parameters and current state, on the input mix
* buffers, saving the results to the output mix buffers.
*
* @param params - Input parameters to use.
* @param state - State to use, must be initialized (see InitializeDelayEffect).
* @param enabled - If enabled, delay will be applied, otherwise input is copied to output.
* @param inputs - Input mix buffers to performan the delay on.
* @param outputs - Output mix buffers to receive the delayed samples.
* @param sample_count - Number of samples to process.
*/
static void ApplyDelayEffect(const DelayInfo::ParameterVersion1& params, DelayInfo::State& state,
const bool enabled, std::vector<std::span<const s32>>& inputs,
std::vector<std::span<s32>>& outputs, const u32 sample_count) {
if (!IsChannelCountValid(params.channel_count)) {
LOG_ERROR(Service_Audio, "Invalid delay channels {}", params.channel_count);
return;
}
if (enabled) {
switch (params.channel_count) {
case 1:
ApplyDelay<1>(params, state, inputs, outputs, sample_count);
break;
case 2:
ApplyDelay<2>(params, state, inputs, outputs, sample_count);
break;
case 4:
ApplyDelay<4>(params, state, inputs, outputs, sample_count);
break;
case 6:
ApplyDelay<6>(params, state, inputs, outputs, sample_count);
break;
default:
for (u32 channel = 0; channel < params.channel_count; channel++) {
if (inputs[channel].data() != outputs[channel].data()) {
std::memcpy(outputs[channel].data(), inputs[channel].data(),
sample_count * sizeof(s32));
}
}
break;
}
} else {
for (u32 channel = 0; channel < params.channel_count; channel++) {
if (inputs[channel].data() != outputs[channel].data()) {
std::memcpy(outputs[channel].data(), inputs[channel].data(),
sample_count * sizeof(s32));
}
}
}
}
void DelayCommand::Dump([[maybe_unused]] const ADSP::CommandListProcessor& processor,
std::string& string) {
string += fmt::format("DelayCommand\n\tenabled {} \n\tinputs: ", effect_enabled);
for (u32 i = 0; i < MaxChannels; i++) {
string += fmt::format("{:02X}, ", inputs[i]);
}
string += "\n\toutputs: ";
for (u32 i = 0; i < MaxChannels; i++) {
string += fmt::format("{:02X}, ", outputs[i]);
}
string += "\n";
}
void DelayCommand::Process(const ADSP::CommandListProcessor& processor) {
std::vector<std::span<const s32>> input_buffers(parameter.channel_count);
std::vector<std::span<s32>> output_buffers(parameter.channel_count);
for (s16 i = 0; i < parameter.channel_count; i++) {
input_buffers[i] = processor.mix_buffers.subspan(inputs[i] * processor.sample_count,
processor.sample_count);
output_buffers[i] = processor.mix_buffers.subspan(outputs[i] * processor.sample_count,
processor.sample_count);
}
auto state_{reinterpret_cast<DelayInfo::State*>(state)};
if (effect_enabled) {
if (parameter.state == DelayInfo::ParameterState::Updating) {
SetDelayEffectParameter(parameter, *state_);
} else if (parameter.state == DelayInfo::ParameterState::Initialized) {
InitializeDelayEffect(parameter, *state_, workbuffer);
}
}
ApplyDelayEffect(parameter, *state_, effect_enabled, input_buffers, output_buffers,
processor.sample_count);
}
bool DelayCommand::Verify(const ADSP::CommandListProcessor& processor) {
return true;
}
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,60 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <string>
#include "audio_core/renderer/command/icommand.h"
#include "audio_core/renderer/effect/delay.h"
#include "common/common_types.h"
namespace AudioCore::AudioRenderer {
namespace ADSP {
class CommandListProcessor;
}
/**
* AudioRenderer command for a delay effect. Delays inputs mix buffers according to the parameters
* and state, outputs receives the delayed samples.
*/
struct DelayCommand : ICommand {
/**
* Print this command's information to a string.
*
* @param processor - The CommandListProcessor processing this command.
* @param string - The string to print into.
*/
void Dump(const ADSP::CommandListProcessor& processor, std::string& string) override;
/**
* Process this command.
*
* @param processor - The CommandListProcessor processing this command.
*/
void Process(const ADSP::CommandListProcessor& processor) override;
/**
* Verify this command's data is valid.
*
* @param processor - The CommandListProcessor processing this command.
* @return True if the command is valid, otherwise false.
*/
bool Verify(const ADSP::CommandListProcessor& processor) override;
/// Input mix buffer offsets for each channel
std::array<s16, MaxChannels> inputs;
/// Output mix buffer offsets for each channel
std::array<s16, MaxChannels> outputs;
/// Input parameters
DelayInfo::ParameterVersion1 parameter;
/// State, updated each call
CpuAddr state;
/// Game-supplied workbuffer (Unused)
CpuAddr workbuffer;
/// Is this effect enabled?
bool effect_enabled;
};
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,437 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <numbers>
#include "audio_core/renderer/adsp/command_list_processor.h"
#include "audio_core/renderer/command/effect/i3dl2_reverb.h"
namespace AudioCore::AudioRenderer {
constexpr std::array<f32, I3dl2ReverbInfo::MaxDelayLines> MinDelayLineTimes{
5.0f,
6.0f,
13.0f,
14.0f,
};
constexpr std::array<f32, I3dl2ReverbInfo::MaxDelayLines> MaxDelayLineTimes{
45.7042007446f,
82.7817001343f,
149.938293457f,
271.575805664f,
};
constexpr std::array<f32, I3dl2ReverbInfo::MaxDelayLines> Decay0MaxDelayLineTimes{17.0f, 13.0f,
9.0f, 7.0f};
constexpr std::array<f32, I3dl2ReverbInfo::MaxDelayLines> Decay1MaxDelayLineTimes{19.0f, 11.0f,
10.0f, 6.0f};
constexpr std::array<f32, I3dl2ReverbInfo::MaxDelayTaps> EarlyTapTimes{
0.0171360000968f,
0.0591540001333f,
0.161733001471f,
0.390186011791f,
0.425262004137f,
0.455410987139f,
0.689737021923f,
0.74590998888f,
0.833844006062f,
0.859502017498f,
0.0f,
0.0750240013003f,
0.168788000941f,
0.299901008606f,
0.337442994118f,
0.371903002262f,
0.599011003971f,
0.716741025448f,
0.817858994007f,
0.85166400671f,
};
constexpr std::array<f32, I3dl2ReverbInfo::MaxDelayTaps> EarlyGains{
0.67096f, 0.61027f, 1.0f, 0.3568f, 0.68361f, 0.65978f, 0.51939f,
0.24712f, 0.45945f, 0.45021f, 0.64196f, 0.54879f, 0.92925f, 0.3827f,
0.72867f, 0.69794f, 0.5464f, 0.24563f, 0.45214f, 0.44042f};
/**
* Update the I3dl2ReverbInfo state according to the given parameters.
*
* @param params - Input parameters to update the state.
* @param state - State to be updated.
* @param reset - If enabled, the state buffers will be reset. Only set this on initialize.
*/
static void UpdateI3dl2ReverbEffectParameter(const I3dl2ReverbInfo::ParameterVersion1& params,
I3dl2ReverbInfo::State& state, const bool reset) {
const auto pow_10 = [](f32 val) -> f32 {
return (val >= 0.0f) ? 1.0f : (val <= -5.3f) ? 0.0f : std::pow(10.0f, val);
};
const auto sin = [](f32 degrees) -> f32 {
return std::sin(degrees * std::numbers::pi_v<f32> / 180.0f);
};
const auto cos = [](f32 degrees) -> f32 {
return std::cos(degrees * std::numbers::pi_v<f32> / 180.0f);
};
Common::FixedPoint<50, 14> delay{static_cast<f32>(params.sample_rate) / 1000.0f};
state.dry_gain = params.dry_gain;
Common::FixedPoint<50, 14> early_gain{
std::min(params.room_gain + params.reflection_gain, 5000.0f) / 2000.0f};
state.early_gain = pow_10(early_gain.to_float());
Common::FixedPoint<50, 14> late_gain{std::min(params.room_gain + params.reverb_gain, 5000.0f) /
2000.0f};
state.late_gain = pow_10(late_gain.to_float());
Common::FixedPoint<50, 14> hf_gain{pow_10(params.room_HF_gain / 2000.0f)};
if (hf_gain >= 1.0f) {
state.lowpass_1 = 0.0f;
state.lowpass_2 = 1.0f;
} else {
const auto reference_hf{(params.reference_HF * 256.0f) /
static_cast<f32>(params.sample_rate)};
const Common::FixedPoint<50, 14> a{1.0f - hf_gain.to_float()};
const Common::FixedPoint<50, 14> b{2.0f + (-cos(reference_hf) * (hf_gain * 2.0f))};
const Common::FixedPoint<50, 14> c{
std::sqrt(std::pow(b.to_float(), 2.0f) + (std::pow(a.to_float(), 2.0f) * -4.0f))};
state.lowpass_1 = std::min(((b - c) / (a * 2.0f)).to_float(), 0.99723f);
state.lowpass_2 = 1.0f - state.lowpass_1;
}
state.early_to_late_taps =
(((params.reflection_delay + params.late_reverb_delay_time) * 1000.0f) * delay).to_int();
state.last_reverb_echo = params.late_reverb_diffusion * 0.6f * 0.01f;
for (u32 i = 0; i < I3dl2ReverbInfo::MaxDelayLines; i++) {
auto curr_delay{
((MinDelayLineTimes[i] + (params.late_reverb_density / 100.0f) *
(MaxDelayLineTimes[i] - MinDelayLineTimes[i])) *
delay)
.to_int()};
state.fdn_delay_lines[i].SetDelay(curr_delay);
const auto a{
(static_cast<f32>(state.fdn_delay_lines[i].delay + state.decay_delay_lines0[i].delay +
state.decay_delay_lines1[i].delay) *
-60.0f) /
(params.late_reverb_decay_time * static_cast<f32>(params.sample_rate))};
const auto b{a / params.late_reverb_HF_decay_ratio};
const auto c{
cos(((params.reference_HF * 0.5f) * 128.0f) / static_cast<f32>(params.sample_rate)) /
sin(((params.reference_HF * 0.5f) * 128.0f) / static_cast<f32>(params.sample_rate))};
const auto d{pow_10((b - a) / 40.0f)};
const auto e{pow_10((b + a) / 40.0f) * 0.7071f};
state.lowpass_coeff[i][0] = ((c * d + 1.0f) * e) / (c + d);
state.lowpass_coeff[i][1] = ((1.0f - (c * d)) * e) / (c + d);
state.lowpass_coeff[i][2] = (c - d) / (c + d);
state.decay_delay_lines0[i].wet_gain = state.last_reverb_echo;
state.decay_delay_lines1[i].wet_gain = state.last_reverb_echo * -0.9f;
}
if (reset) {
state.shelf_filter.fill(0.0f);
state.lowpass_0 = 0.0f;
for (u32 i = 0; i < I3dl2ReverbInfo::MaxDelayLines; i++) {
std::ranges::fill(state.fdn_delay_lines[i].buffer, 0);
std::ranges::fill(state.decay_delay_lines0[i].buffer, 0);
std::ranges::fill(state.decay_delay_lines1[i].buffer, 0);
}
std::ranges::fill(state.center_delay_line.buffer, 0);
std::ranges::fill(state.early_delay_line.buffer, 0);
}
const auto reflection_time{(params.late_reverb_delay_time * 0.9998f + 0.02f) * 1000.0f};
const auto reflection_delay{params.reflection_delay * 1000.0f};
for (u32 i = 0; i < I3dl2ReverbInfo::MaxDelayTaps; i++) {
auto length{((reflection_delay + reflection_time * EarlyTapTimes[i]) * delay).to_int()};
if (length >= state.early_delay_line.max_delay) {
length = state.early_delay_line.max_delay;
}
state.early_tap_steps[i] = length;
}
}
/**
* Initialize a new I3dl2ReverbInfo state according to the given parameters.
*
* @param params - Input parameters to update the state.
* @param state - State to be updated.
* @param workbuffer - Game-supplied memory for the state. (Unused)
*/
static void InitializeI3dl2ReverbEffect(const I3dl2ReverbInfo::ParameterVersion1& params,
I3dl2ReverbInfo::State& state, const CpuAddr workbuffer) {
state = {};
Common::FixedPoint<50, 14> delay{static_cast<f32>(params.sample_rate) / 1000};
for (u32 i = 0; i < I3dl2ReverbInfo::MaxDelayLines; i++) {
auto fdn_delay_time{(MaxDelayLineTimes[i] * delay).to_uint_floor()};
state.fdn_delay_lines[i].Initialize(fdn_delay_time);
auto decay0_delay_time{(Decay0MaxDelayLineTimes[i] * delay).to_uint_floor()};
state.decay_delay_lines0[i].Initialize(decay0_delay_time);
auto decay1_delay_time{(Decay1MaxDelayLineTimes[i] * delay).to_uint_floor()};
state.decay_delay_lines1[i].Initialize(decay1_delay_time);
}
const auto center_delay_time{(5 * delay).to_uint_floor()};
state.center_delay_line.Initialize(center_delay_time);
const auto early_delay_time{(400 * delay).to_uint_floor()};
state.early_delay_line.Initialize(early_delay_time);
UpdateI3dl2ReverbEffectParameter(params, state, true);
}
/**
* Pass-through the effect, copying input to output directly, with no reverb applied.
*
* @param inputs - Array of input mix buffers to copy.
* @param outputs - Array of output mix buffers to receive copy.
* @param channel_count - Number of channels in inputs and outputs.
* @param sample_count - Number of samples within each channel (unused).
*/
static void ApplyI3dl2ReverbEffectBypass(std::span<std::span<const s32>> inputs,
std::span<std::span<s32>> outputs, const u32 channel_count,
[[maybe_unused]] const u32 sample_count) {
for (u32 i = 0; i < channel_count; i++) {
if (inputs[i].data() != outputs[i].data()) {
std::memcpy(outputs[i].data(), inputs[i].data(), outputs[i].size_bytes());
}
}
}
/**
* Tick the delay lines, reading and returning their current output, and writing a new decaying
* sample (mix).
*
* @param decay0 - The first decay line.
* @param decay1 - The second decay line.
* @param fdn - Feedback delay network.
* @param mix - The new calculated sample to be written and decayed.
* @return The next delayed and decayed sample.
*/
static Common::FixedPoint<50, 14> Axfx2AllPassTick(I3dl2ReverbInfo::I3dl2DelayLine& decay0,
I3dl2ReverbInfo::I3dl2DelayLine& decay1,
I3dl2ReverbInfo::I3dl2DelayLine& fdn,
const Common::FixedPoint<50, 14> mix) {
auto val{decay0.Read()};
auto mixed{mix - (val * decay0.wet_gain)};
auto out{decay0.Tick(mixed) + (mixed * decay0.wet_gain)};
val = decay1.Read();
mixed = out - (val * decay1.wet_gain);
out = decay1.Tick(mixed) + (mixed * decay1.wet_gain);
fdn.Tick(out);
return out;
}
/**
* Impl. Apply a I3DL2 reverb according to the current state, on the input mix buffers,
* saving the results to the output mix buffers.
*
* @tparam NumChannels - Number of channels to process. 1-6.
Inputs/outputs should have this many buffers.
* @param state - State to use, must be initialized (see InitializeI3dl2ReverbEffect).
* @param inputs - Input mix buffers to perform the reverb on.
* @param outputs - Output mix buffers to receive the reverbed samples.
* @param sample_count - Number of samples to process.
*/
template <size_t NumChannels>
static void ApplyI3dl2ReverbEffect(I3dl2ReverbInfo::State& state,
std::span<std::span<const s32>> inputs,
std::span<std::span<s32>> outputs, const u32 sample_count) {
constexpr std::array<u8, I3dl2ReverbInfo::MaxDelayTaps> OutTapIndexes1Ch{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
constexpr std::array<u8, I3dl2ReverbInfo::MaxDelayTaps> OutTapIndexes2Ch{
0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1,
};
constexpr std::array<u8, I3dl2ReverbInfo::MaxDelayTaps> OutTapIndexes4Ch{
0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0, 3, 3, 3,
};
constexpr std::array<u8, I3dl2ReverbInfo::MaxDelayTaps> OutTapIndexes6Ch{
2, 0, 0, 1, 1, 1, 1, 4, 4, 4, 1, 1, 1, 0, 0, 0, 0, 5, 5, 5,
};
std::span<const u8> tap_indexes{};
if constexpr (NumChannels == 1) {
tap_indexes = OutTapIndexes1Ch;
} else if constexpr (NumChannels == 2) {
tap_indexes = OutTapIndexes2Ch;
} else if constexpr (NumChannels == 4) {
tap_indexes = OutTapIndexes4Ch;
} else if constexpr (NumChannels == 6) {
tap_indexes = OutTapIndexes6Ch;
}
for (u32 sample_index = 0; sample_index < sample_count; sample_index++) {
Common::FixedPoint<50, 14> early_to_late_tap{
state.early_delay_line.TapOut(state.early_to_late_taps)};
std::array<Common::FixedPoint<50, 14>, NumChannels> output_samples{};
for (u32 early_tap = 0; early_tap < I3dl2ReverbInfo::MaxDelayTaps; early_tap++) {
output_samples[tap_indexes[early_tap]] +=
state.early_delay_line.TapOut(state.early_tap_steps[early_tap]) *
EarlyGains[early_tap];
if constexpr (NumChannels == 6) {
output_samples[static_cast<u32>(Channels::LFE)] +=
state.early_delay_line.TapOut(state.early_tap_steps[early_tap]) *
EarlyGains[early_tap];
}
}
Common::FixedPoint<50, 14> current_sample{};
for (u32 channel = 0; channel < NumChannels; channel++) {
current_sample += inputs[channel][sample_index];
}
state.lowpass_0 =
(current_sample * state.lowpass_2 + state.lowpass_0 * state.lowpass_1).to_float();
state.early_delay_line.Tick(state.lowpass_0);
for (u32 channel = 0; channel < NumChannels; channel++) {
output_samples[channel] *= state.early_gain;
}
std::array<Common::FixedPoint<50, 14>, I3dl2ReverbInfo::MaxDelayLines> filtered_samples{};
for (u32 delay_line = 0; delay_line < I3dl2ReverbInfo::MaxDelayLines; delay_line++) {
filtered_samples[delay_line] =
state.fdn_delay_lines[delay_line].Read() * state.lowpass_coeff[delay_line][0] +
state.shelf_filter[delay_line];
state.shelf_filter[delay_line] =
(filtered_samples[delay_line] * state.lowpass_coeff[delay_line][2] +
state.fdn_delay_lines[delay_line].Read() * state.lowpass_coeff[delay_line][1])
.to_float();
}
const std::array<Common::FixedPoint<50, 14>, I3dl2ReverbInfo::MaxDelayLines> mix_matrix{
filtered_samples[1] + filtered_samples[2] + early_to_late_tap * state.late_gain,
-filtered_samples[0] - filtered_samples[3] + early_to_late_tap * state.late_gain,
filtered_samples[0] - filtered_samples[3] + early_to_late_tap * state.late_gain,
filtered_samples[1] - filtered_samples[2] + early_to_late_tap * state.late_gain,
};
std::array<Common::FixedPoint<50, 14>, I3dl2ReverbInfo::MaxDelayLines> allpass_samples{};
for (u32 delay_line = 0; delay_line < I3dl2ReverbInfo::MaxDelayLines; delay_line++) {
allpass_samples[delay_line] = Axfx2AllPassTick(
state.decay_delay_lines0[delay_line], state.decay_delay_lines1[delay_line],
state.fdn_delay_lines[delay_line], mix_matrix[delay_line]);
}
if constexpr (NumChannels == 6) {
const std::array<Common::FixedPoint<50, 14>, MaxChannels> allpass_outputs{
allpass_samples[0], allpass_samples[1], allpass_samples[2] - allpass_samples[3],
allpass_samples[3], allpass_samples[2], allpass_samples[3],
};
for (u32 channel = 0; channel < NumChannels; channel++) {
Common::FixedPoint<50, 14> allpass{};
if (channel == static_cast<u32>(Channels::Center)) {
allpass = state.center_delay_line.Tick(allpass_outputs[channel] * 0.5f);
} else {
allpass = allpass_outputs[channel];
}
auto out_sample{output_samples[channel] + allpass +
state.dry_gain * static_cast<f32>(inputs[channel][sample_index])};
outputs[channel][sample_index] =
static_cast<s32>(std::clamp(out_sample.to_float(), -8388600.0f, 8388600.0f));
}
} else {
for (u32 channel = 0; channel < NumChannels; channel++) {
auto out_sample{output_samples[channel] + allpass_samples[channel] +
state.dry_gain * static_cast<f32>(inputs[channel][sample_index])};
outputs[channel][sample_index] =
static_cast<s32>(std::clamp(out_sample.to_float(), -8388600.0f, 8388600.0f));
}
}
}
}
/**
* Apply a I3DL2 reverb if enabled, according to the current state, on the input mix buffers,
* saving the results to the output mix buffers.
*
* @param params - Input parameters to use.
* @param state - State to use, must be initialized (see InitializeI3dl2ReverbEffect).
* @param enabled - If enabled, delay will be applied, otherwise input is copied to output.
* @param inputs - Input mix buffers to performan the delay on.
* @param outputs - Output mix buffers to receive the delayed samples.
* @param sample_count - Number of samples to process.
*/
static void ApplyI3dl2ReverbEffect(const I3dl2ReverbInfo::ParameterVersion1& params,
I3dl2ReverbInfo::State& state, const bool enabled,
std::span<std::span<const s32>> inputs,
std::span<std::span<s32>> outputs, const u32 sample_count) {
if (enabled) {
switch (params.channel_count) {
case 0:
return;
case 1:
ApplyI3dl2ReverbEffect<1>(state, inputs, outputs, sample_count);
break;
case 2:
ApplyI3dl2ReverbEffect<2>(state, inputs, outputs, sample_count);
break;
case 4:
ApplyI3dl2ReverbEffect<4>(state, inputs, outputs, sample_count);
break;
case 6:
ApplyI3dl2ReverbEffect<6>(state, inputs, outputs, sample_count);
break;
default:
ApplyI3dl2ReverbEffectBypass(inputs, outputs, params.channel_count, sample_count);
break;
}
} else {
ApplyI3dl2ReverbEffectBypass(inputs, outputs, params.channel_count, sample_count);
}
}
void I3dl2ReverbCommand::Dump([[maybe_unused]] const ADSP::CommandListProcessor& processor,
std::string& string) {
string += fmt::format("I3dl2ReverbCommand\n\tenabled {} \n\tinputs: ", effect_enabled);
for (u32 i = 0; i < parameter.channel_count; i++) {
string += fmt::format("{:02X}, ", inputs[i]);
}
string += "\n\toutputs: ";
for (u32 i = 0; i < parameter.channel_count; i++) {
string += fmt::format("{:02X}, ", outputs[i]);
}
string += "\n";
}
void I3dl2ReverbCommand::Process(const ADSP::CommandListProcessor& processor) {
std::vector<std::span<const s32>> input_buffers(parameter.channel_count);
std::vector<std::span<s32>> output_buffers(parameter.channel_count);
for (u32 i = 0; i < parameter.channel_count; i++) {
input_buffers[i] = processor.mix_buffers.subspan(inputs[i] * processor.sample_count,
processor.sample_count);
output_buffers[i] = processor.mix_buffers.subspan(outputs[i] * processor.sample_count,
processor.sample_count);
}
auto state_{reinterpret_cast<I3dl2ReverbInfo::State*>(state)};
if (effect_enabled) {
if (parameter.state == I3dl2ReverbInfo::ParameterState::Updating) {
UpdateI3dl2ReverbEffectParameter(parameter, *state_, false);
} else if (parameter.state == I3dl2ReverbInfo::ParameterState::Initialized) {
InitializeI3dl2ReverbEffect(parameter, *state_, workbuffer);
}
}
ApplyI3dl2ReverbEffect(parameter, *state_, effect_enabled, input_buffers, output_buffers,
processor.sample_count);
}
bool I3dl2ReverbCommand::Verify(const ADSP::CommandListProcessor& processor) {
return true;
}
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,60 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <string>
#include "audio_core/renderer/command/icommand.h"
#include "audio_core/renderer/effect/i3dl2.h"
#include "common/common_types.h"
namespace AudioCore::AudioRenderer {
namespace ADSP {
class CommandListProcessor;
}
/**
* AudioRenderer command for a I3DL2Reverb effect. Apply a reverb to inputs mix buffer according to
* the I3DL2 spec, outputs receives the results.
*/
struct I3dl2ReverbCommand : ICommand {
/**
* Print this command's information to a string.
*
* @param processor - The CommandListProcessor processing this command.
* @param string - The string to print into.
*/
void Dump(const ADSP::CommandListProcessor& processor, std::string& string) override;
/**
* Process this command.
*
* @param processor - The CommandListProcessor processing this command.
*/
void Process(const ADSP::CommandListProcessor& processor) override;
/**
* Verify this command's data is valid.
*
* @param processor - The CommandListProcessor processing this command.
* @return True if the command is valid, otherwise false.
*/
bool Verify(const ADSP::CommandListProcessor& processor) override;
/// Input mix buffer offsets for each channel
std::array<s16, MaxChannels> inputs;
/// Output mix buffer offsets for each channel
std::array<s16, MaxChannels> outputs;
/// Input parameters
I3dl2ReverbInfo::ParameterVersion1 parameter;
/// State, updated each call
CpuAddr state;
/// Game-supplied workbuffer (Unused)
CpuAddr workbuffer;
/// Is this effect enabled?
bool effect_enabled;
};
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,222 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "audio_core/renderer/adsp/command_list_processor.h"
#include "audio_core/renderer/command/effect/light_limiter.h"
namespace AudioCore::AudioRenderer {
/**
* Update the LightLimiterInfo state according to the given parameters.
* A no-op.
*
* @param params - Input parameters to update the state.
* @param state - State to be updated.
*/
static void UpdateLightLimiterEffectParameter(const LightLimiterInfo::ParameterVersion2& params,
LightLimiterInfo::State& state) {}
/**
* Initialize a new LightLimiterInfo state according to the given parameters.
*
* @param params - Input parameters to update the state.
* @param state - State to be updated.
* @param workbuffer - Game-supplied memory for the state. (Unused)
*/
static void InitializeLightLimiterEffect(const LightLimiterInfo::ParameterVersion2& params,
LightLimiterInfo::State& state, const CpuAddr workbuffer) {
state = {};
state.samples_average.fill(0.0f);
state.compression_gain.fill(1.0f);
state.look_ahead_sample_offsets.fill(0);
for (u32 i = 0; i < params.channel_count; i++) {
state.look_ahead_sample_buffers[i].resize(params.look_ahead_samples_max, 0.0f);
}
}
/**
* Apply a light limiter effect if enabled, according to the current state, on the input mix
* buffers, saving the results to the output mix buffers.
*
* @param params - Input parameters to use.
* @param state - State to use, must be initialized (see InitializeLightLimiterEffect).
* @param enabled - If enabled, limiter will be applied, otherwise input is copied to output.
* @param inputs - Input mix buffers to perform the limiter on.
* @param outputs - Output mix buffers to receive the limited samples.
* @param sample_count - Number of samples to process.
* @params statistics - Optional output statistics, only used with version 2.
*/
static void ApplyLightLimiterEffect(const LightLimiterInfo::ParameterVersion2& params,
LightLimiterInfo::State& state, const bool enabled,
std::vector<std::span<const s32>>& inputs,
std::vector<std::span<s32>>& outputs, const u32 sample_count,
LightLimiterInfo::StatisticsInternal* statistics) {
constexpr s64 min{std::numeric_limits<s32>::min()};
constexpr s64 max{std::numeric_limits<s32>::max()};
const auto recip_estimate = [](f64 a) -> f64 {
s32 q, s;
f64 r;
q = (s32)(a * 512.0); /* a in units of 1/512 rounded down */
r = 1.0 / (((f64)q + 0.5) / 512.0); /* reciprocal r */
s = (s32)(256.0 * r + 0.5); /* r in units of 1/256 rounded to nearest */
return ((f64)s / 256.0);
};
if (enabled) {
if (statistics && params.statistics_reset_required) {
for (u32 i = 0; i < params.channel_count; i++) {
statistics->channel_compression_gain_min[i] = 1.0f;
statistics->channel_max_sample[i] = 0;
}
}
for (u32 sample_index = 0; sample_index < sample_count; sample_index++) {
for (u32 channel = 0; channel < params.channel_count; channel++) {
auto sample{(Common::FixedPoint<49, 15>(inputs[channel][sample_index]) /
Common::FixedPoint<49, 15>::one) *
params.input_gain};
auto abs_sample{sample};
if (sample < 0.0f) {
abs_sample = -sample;
}
auto coeff{abs_sample > state.samples_average[channel] ? params.attack_coeff
: params.release_coeff};
state.samples_average[channel] +=
((abs_sample - state.samples_average[channel]) * coeff).to_float();
// Reciprocal estimate
auto new_average_sample{Common::FixedPoint<49, 15>(
recip_estimate(state.samples_average[channel].to_double()))};
if (params.processing_mode != LightLimiterInfo::ProcessingMode::Mode1) {
// Two Newton-Raphson steps
auto temp{2.0 - (state.samples_average[channel] * new_average_sample)};
new_average_sample = 2.0 - (state.samples_average[channel] * temp);
}
auto above_threshold{state.samples_average[channel] > params.threshold};
auto attenuation{above_threshold ? params.threshold * new_average_sample : 1.0f};
coeff = attenuation < state.compression_gain[channel] ? params.attack_coeff
: params.release_coeff;
state.compression_gain[channel] +=
(attenuation - state.compression_gain[channel]) * coeff;
auto lookahead_sample{
state.look_ahead_sample_buffers[channel]
[state.look_ahead_sample_offsets[channel]]};
state.look_ahead_sample_buffers[channel][state.look_ahead_sample_offsets[channel]] =
sample;
state.look_ahead_sample_offsets[channel] =
(state.look_ahead_sample_offsets[channel] + 1) % params.look_ahead_samples_min;
outputs[channel][sample_index] = static_cast<s32>(
std::clamp((lookahead_sample * state.compression_gain[channel] *
params.output_gain * Common::FixedPoint<49, 15>::one)
.to_long(),
min, max));
if (statistics) {
statistics->channel_max_sample[channel] =
std::max(statistics->channel_max_sample[channel], abs_sample.to_float());
statistics->channel_compression_gain_min[channel] =
std::min(statistics->channel_compression_gain_min[channel],
state.compression_gain[channel].to_float());
}
}
}
} else {
for (u32 i = 0; i < params.channel_count; i++) {
if (params.inputs[i] != params.outputs[i]) {
std::memcpy(outputs[i].data(), inputs[i].data(), outputs[i].size_bytes());
}
}
}
}
void LightLimiterVersion1Command::Dump([[maybe_unused]] const ADSP::CommandListProcessor& processor,
std::string& string) {
string += fmt::format("LightLimiterVersion1Command\n\tinputs: ");
for (u32 i = 0; i < MaxChannels; i++) {
string += fmt::format("{:02X}, ", inputs[i]);
}
string += "\n\toutputs: ";
for (u32 i = 0; i < MaxChannels; i++) {
string += fmt::format("{:02X}, ", outputs[i]);
}
string += "\n";
}
void LightLimiterVersion1Command::Process(const ADSP::CommandListProcessor& processor) {
std::vector<std::span<const s32>> input_buffers(parameter.channel_count);
std::vector<std::span<s32>> output_buffers(parameter.channel_count);
for (u32 i = 0; i < parameter.channel_count; i++) {
input_buffers[i] = processor.mix_buffers.subspan(inputs[i] * processor.sample_count,
processor.sample_count);
output_buffers[i] = processor.mix_buffers.subspan(outputs[i] * processor.sample_count,
processor.sample_count);
}
auto state_{reinterpret_cast<LightLimiterInfo::State*>(state)};
if (effect_enabled) {
if (parameter.state == LightLimiterInfo::ParameterState::Updating) {
UpdateLightLimiterEffectParameter(parameter, *state_);
} else if (parameter.state == LightLimiterInfo::ParameterState::Initialized) {
InitializeLightLimiterEffect(parameter, *state_, workbuffer);
}
}
LightLimiterInfo::StatisticsInternal* statistics{nullptr};
ApplyLightLimiterEffect(parameter, *state_, effect_enabled, input_buffers, output_buffers,
processor.sample_count, statistics);
}
bool LightLimiterVersion1Command::Verify(const ADSP::CommandListProcessor& processor) {
return true;
}
void LightLimiterVersion2Command::Dump([[maybe_unused]] const ADSP::CommandListProcessor& processor,
std::string& string) {
string += fmt::format("LightLimiterVersion2Command\n\tinputs: \n");
for (u32 i = 0; i < MaxChannels; i++) {
string += fmt::format("{:02X}, ", inputs[i]);
}
string += "\n\toutputs: ";
for (u32 i = 0; i < MaxChannels; i++) {
string += fmt::format("{:02X}, ", outputs[i]);
}
string += "\n";
}
void LightLimiterVersion2Command::Process(const ADSP::CommandListProcessor& processor) {
std::vector<std::span<const s32>> input_buffers(parameter.channel_count);
std::vector<std::span<s32>> output_buffers(parameter.channel_count);
for (u32 i = 0; i < parameter.channel_count; i++) {
input_buffers[i] = processor.mix_buffers.subspan(inputs[i] * processor.sample_count,
processor.sample_count);
output_buffers[i] = processor.mix_buffers.subspan(outputs[i] * processor.sample_count,
processor.sample_count);
}
auto state_{reinterpret_cast<LightLimiterInfo::State*>(state)};
if (effect_enabled) {
if (parameter.state == LightLimiterInfo::ParameterState::Updating) {
UpdateLightLimiterEffectParameter(parameter, *state_);
} else if (parameter.state == LightLimiterInfo::ParameterState::Initialized) {
InitializeLightLimiterEffect(parameter, *state_, workbuffer);
}
}
auto statistics{reinterpret_cast<LightLimiterInfo::StatisticsInternal*>(result_state)};
ApplyLightLimiterEffect(parameter, *state_, effect_enabled, input_buffers, output_buffers,
processor.sample_count, statistics);
}
bool LightLimiterVersion2Command::Verify(const ADSP::CommandListProcessor& processor) {
return true;
}
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,103 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <string>
#include "audio_core/renderer/command/icommand.h"
#include "audio_core/renderer/effect/light_limiter.h"
#include "common/common_types.h"
namespace AudioCore::AudioRenderer {
namespace ADSP {
class CommandListProcessor;
}
/**
* AudioRenderer command for limiting volume between a high and low threshold.
* Version 1.
*/
struct LightLimiterVersion1Command : ICommand {
/**
* Print this command's information to a string.
*
* @param processor - The CommandListProcessor processing this command.
* @param string - The string to print into.
*/
void Dump(const ADSP::CommandListProcessor& processor, std::string& string) override;
/**
* Process this command.
*
* @param processor - The CommandListProcessor processing this command.
*/
void Process(const ADSP::CommandListProcessor& processor) override;
/**
* Verify this command's data is valid.
*
* @param processor - The CommandListProcessor processing this command.
* @return True if the command is valid, otherwise false.
*/
bool Verify(const ADSP::CommandListProcessor& processor) override;
/// Input mix buffer offsets for each channel
std::array<s16, MaxChannels> inputs;
/// Output mix buffer offsets for each channel
std::array<s16, MaxChannels> outputs;
/// Input parameters
LightLimiterInfo::ParameterVersion2 parameter;
/// State, updated each call
CpuAddr state;
/// Game-supplied workbuffer (Unused)
CpuAddr workbuffer;
/// Is this effect enabled?
bool effect_enabled;
};
/**
* AudioRenderer command for limiting volume between a high and low threshold.
* Version 2 with output statistics.
*/
struct LightLimiterVersion2Command : ICommand {
/**
* Print this command's information to a string.
*
* @param processor - The CommandListProcessor processing this command.
* @param string - The string to print into.
*/
void Dump(const ADSP::CommandListProcessor& processor, std::string& string) override;
/**
* Process this command.
*
* @param processor - The CommandListProcessor processing this command.
*/
void Process(const ADSP::CommandListProcessor& processor) override;
/**
* Verify this command's data is valid.
*
* @param processor - The CommandListProcessor processing this command.
*/
bool Verify(const ADSP::CommandListProcessor& processor) override;
/// Input mix buffer offsets for each channel
std::array<s16, MaxChannels> inputs;
/// Output mix buffer offsets for each channel
std::array<s16, MaxChannels> outputs;
/// Input parameters
LightLimiterInfo::ParameterVersion2 parameter;
/// State, updated each call
CpuAddr state;
/// Game-supplied workbuffer (Unused)
CpuAddr workbuffer;
/// Optional statistics, sent back to the sysmodule
CpuAddr result_state;
/// Is this effect enabled?
bool effect_enabled;
};
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,45 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include "audio_core/renderer/adsp/command_list_processor.h"
#include "audio_core/renderer/command/effect/biquad_filter.h"
#include "audio_core/renderer/command/effect/multi_tap_biquad_filter.h"
namespace AudioCore::AudioRenderer {
void MultiTapBiquadFilterCommand::Dump([[maybe_unused]] const ADSP::CommandListProcessor& processor,
std::string& string) {
string += fmt::format(
"MultiTapBiquadFilterCommand\n\tinput {:02X}\n\toutput {:02X}\n\tneeds_init ({}, {})\n",
input, output, needs_init[0], needs_init[1]);
}
void MultiTapBiquadFilterCommand::Process(const ADSP::CommandListProcessor& processor) {
if (filter_tap_count > MaxBiquadFilters) {
LOG_ERROR(Service_Audio, "Too many filter taps! {}", filter_tap_count);
filter_tap_count = MaxBiquadFilters;
}
auto input_buffer{
processor.mix_buffers.subspan(input * processor.sample_count, processor.sample_count)};
auto output_buffer{
processor.mix_buffers.subspan(output * processor.sample_count, processor.sample_count)};
// TODO: Fix this, currently just applies the filter to the input twice,
// and doesn't chain the biquads together at all.
for (u32 i = 0; i < filter_tap_count; i++) {
auto state{reinterpret_cast<VoiceState::BiquadFilterState*>(states[i])};
if (needs_init[i]) {
std::memset(state, 0, sizeof(VoiceState::BiquadFilterState));
}
ApplyBiquadFilterFloat(output_buffer, input_buffer, biquads[i].b, biquads[i].a, *state,
processor.sample_count);
}
}
bool MultiTapBiquadFilterCommand::Verify(const ADSP::CommandListProcessor& processor) {
return true;
}
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,59 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <string>
#include "audio_core/renderer/command/icommand.h"
#include "audio_core/renderer/voice/voice_info.h"
#include "common/common_types.h"
namespace AudioCore::AudioRenderer {
namespace ADSP {
class CommandListProcessor;
}
/**
* AudioRenderer command for applying multiple biquads at once.
*/
struct MultiTapBiquadFilterCommand : ICommand {
/**
* Print this command's information to a string.
*
* @param processor - The CommandListProcessor processing this command.
* @param string - The string to print into.
*/
void Dump(const ADSP::CommandListProcessor& processor, std::string& string) override;
/**
* Process this command.
*
* @param processor - The CommandListProcessor processing this command.
*/
void Process(const ADSP::CommandListProcessor& processor) override;
/**
* Verify this command's data is valid.
*
* @param processor - The CommandListProcessor processing this command.
* @return True if the command is valid, otherwise false.
*/
bool Verify(const ADSP::CommandListProcessor& processor) override;
/// Input mix buffer index
s16 input;
/// Output mix buffer index
s16 output;
/// Biquad parameters
std::array<VoiceInfo::BiquadFilterParameter, MaxBiquadFilters> biquads;
/// Biquad states, updated each call
std::array<CpuAddr, MaxBiquadFilters> states;
/// If each biquad needs initialisation
std::array<bool, MaxBiquadFilters> needs_init;
/// Number of active biquads
u8 filter_tap_count;
};
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,440 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <numbers>
#include <ranges>
#include "audio_core/renderer/adsp/command_list_processor.h"
#include "audio_core/renderer/command/effect/reverb.h"
namespace AudioCore::AudioRenderer {
constexpr std::array<f32, ReverbInfo::MaxDelayLines> FdnMaxDelayLineTimes = {
53.9532470703125f,
79.19256591796875f,
116.23876953125f,
170.61529541015625f,
};
constexpr std::array<f32, ReverbInfo::MaxDelayLines> DecayMaxDelayLineTimes = {
7.0f,
9.0f,
13.0f,
17.0f,
};
constexpr std::array<std::array<f32, ReverbInfo::MaxDelayTaps + 1>, ReverbInfo::NumEarlyModes>
EarlyDelayTimes = {
{{0.000000f, 3.500000f, 2.799988f, 3.899963f, 2.699951f, 13.399963f, 7.899963f, 8.399963f,
9.899963f, 12.000000f, 12.500000f},
{0.000000f, 11.799988f, 5.500000f, 11.199951f, 10.399963f, 38.099976f, 22.199951f,
29.599976f, 21.199951f, 24.799988f, 40.000000f},
{0.000000f, 41.500000f, 20.500000f, 41.299988f, 0.000000f, 29.500000f, 33.799988f,
45.199951f, 46.799988f, 0.000000f, 50.000000f},
{33.099976f, 43.299988f, 22.799988f, 37.899963f, 14.899963f, 35.299988f, 17.899963f,
34.199951f, 0.000000f, 43.299988f, 50.000000f},
{0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f,
0.000000f, 0.000000f, 0.000000f}},
};
constexpr std::array<std::array<f32, ReverbInfo::MaxDelayTaps>, ReverbInfo::NumEarlyModes>
EarlyDelayGains = {{
{0.699951f, 0.679993f, 0.699951f, 0.679993f, 0.699951f, 0.679993f, 0.699951f, 0.679993f,
0.679993f, 0.679993f},
{0.699951f, 0.679993f, 0.699951f, 0.679993f, 0.699951f, 0.679993f, 0.679993f, 0.679993f,
0.679993f, 0.679993f},
{0.500000f, 0.699951f, 0.699951f, 0.679993f, 0.500000f, 0.679993f, 0.679993f, 0.699951f,
0.679993f, 0.000000f},
{0.929993f, 0.919983f, 0.869995f, 0.859985f, 0.939941f, 0.809998f, 0.799988f, 0.769958f,
0.759949f, 0.649963f},
{0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f, 0.000000f,
0.000000f, 0.000000f},
}};
constexpr std::array<std::array<f32, ReverbInfo::MaxDelayLines>, ReverbInfo::NumLateModes>
FdnDelayTimes = {{
{53.953247f, 79.192566f, 116.238770f, 130.615295f},
{53.953247f, 79.192566f, 116.238770f, 170.615295f},
{5.000000f, 10.000000f, 5.000000f, 10.000000f},
{47.029968f, 71.000000f, 103.000000f, 170.000000f},
{53.953247f, 79.192566f, 116.238770f, 170.615295f},
}};
constexpr std::array<std::array<f32, ReverbInfo::MaxDelayLines>, ReverbInfo::NumLateModes>
DecayDelayTimes = {{
{7.000000f, 9.000000f, 13.000000f, 17.000000f},
{7.000000f, 9.000000f, 13.000000f, 17.000000f},
{1.000000f, 1.000000f, 1.000000f, 1.000000f},
{7.000000f, 7.000000f, 13.000000f, 9.000000f},
{7.000000f, 9.000000f, 13.000000f, 17.000000f},
}};
/**
* Update the ReverbInfo state according to the given parameters.
*
* @param params - Input parameters to update the state.
* @param state - State to be updated.
*/
static void UpdateReverbEffectParameter(const ReverbInfo::ParameterVersion2& params,
ReverbInfo::State& state) {
const auto pow_10 = [](f32 val) -> f32 {
return (val >= 0.0f) ? 1.0f : (val <= -5.3f) ? 0.0f : std::pow(10.0f, val);
};
const auto cos = [](f32 degrees) -> f32 {
return std::cos(degrees * std::numbers::pi_v<f32> / 180.0f);
};
static bool unk_initialized{false};
static Common::FixedPoint<50, 14> unk_value{};
const auto sample_rate{Common::FixedPoint<50, 14>::from_base(params.sample_rate)};
const auto pre_delay_time{Common::FixedPoint<50, 14>::from_base(params.pre_delay)};
for (u32 i = 0; i < ReverbInfo::MaxDelayTaps; i++) {
auto early_delay{
((pre_delay_time + EarlyDelayTimes[params.early_mode][i]) * sample_rate).to_int()};
early_delay = std::min(early_delay, state.pre_delay_line.sample_count_max);
state.early_delay_times[i] = early_delay + 1;
state.early_gains[i] = Common::FixedPoint<50, 14>::from_base(params.early_gain) *
EarlyDelayGains[params.early_mode][i];
}
if (params.channel_count == 2) {
state.early_gains[4] * 0.5f;
state.early_gains[5] * 0.5f;
}
auto pre_time{
((pre_delay_time + EarlyDelayTimes[params.early_mode][10]) * sample_rate).to_int()};
state.pre_delay_time = std::min(pre_time, state.pre_delay_line.sample_count_max);
if (!unk_initialized) {
unk_value = cos((1280.0f / sample_rate).to_float());
unk_initialized = true;
}
for (u32 i = 0; i < ReverbInfo::MaxDelayLines; i++) {
const auto fdn_delay{(FdnDelayTimes[params.late_mode][i] * sample_rate).to_int()};
state.fdn_delay_lines[i].sample_count =
std::min(fdn_delay, state.fdn_delay_lines[i].sample_count_max);
state.fdn_delay_lines[i].buffer_end =
&state.fdn_delay_lines[i].buffer[state.fdn_delay_lines[i].sample_count - 1];
const auto decay_delay{(DecayDelayTimes[params.late_mode][i] * sample_rate).to_int()};
state.decay_delay_lines[i].sample_count =
std::min(decay_delay, state.decay_delay_lines[i].sample_count_max);
state.decay_delay_lines[i].buffer_end =
&state.decay_delay_lines[i].buffer[state.decay_delay_lines[i].sample_count - 1];
state.decay_delay_lines[i].decay =
0.5999755859375f * (1.0f - Common::FixedPoint<50, 14>::from_base(params.colouration));
auto a{(Common::FixedPoint<50, 14>(state.fdn_delay_lines[i].sample_count_max) +
state.decay_delay_lines[i].sample_count_max) *
-3};
auto b{a / (Common::FixedPoint<50, 14>::from_base(params.decay_time) * sample_rate)};
Common::FixedPoint<50, 14> c{0.0f};
Common::FixedPoint<50, 14> d{0.0f};
auto hf_decay_ratio{Common::FixedPoint<50, 14>::from_base(params.high_freq_decay_ratio)};
if (hf_decay_ratio > 0.99493408203125f) {
c = 0.0f;
d = 1.0f;
} else {
const auto e{
pow_10(((((1.0f / hf_decay_ratio) - 1.0f) * 2) / 100 * (b / 10)).to_float())};
const auto f{1.0f - e};
const auto g{2.0f - (unk_value * e * 2)};
const auto h{std::sqrt(std::pow(g.to_float(), 2.0f) - (std::pow(f, 2.0f) * 4))};
c = (g - h) / (f * 2.0f);
d = 1.0f - c;
}
state.hf_decay_prev_gain[i] = c;
state.hf_decay_gain[i] = pow_10((b / 1000).to_float()) * d * 0.70709228515625f;
state.prev_feedback_output[i] = 0;
}
}
/**
* Initialize a new ReverbInfo state according to the given parameters.
*
* @param params - Input parameters to update the state.
* @param state - State to be updated.
* @param workbuffer - Game-supplied memory for the state. (Unused)
* @param long_size_pre_delay_supported - Use a longer pre-delay time before reverb begins.
*/
static void InitializeReverbEffect(const ReverbInfo::ParameterVersion2& params,
ReverbInfo::State& state, const CpuAddr workbuffer,
const bool long_size_pre_delay_supported) {
state = {};
auto delay{Common::FixedPoint<50, 14>::from_base(params.sample_rate)};
for (u32 i = 0; i < ReverbInfo::MaxDelayLines; i++) {
auto fdn_delay_time{(FdnMaxDelayLineTimes[i] * delay).to_uint_floor()};
state.fdn_delay_lines[i].Initialize(fdn_delay_time, 1.0f);
auto decay_delay_time{(DecayMaxDelayLineTimes[i] * delay).to_uint_floor()};
state.decay_delay_lines[i].Initialize(decay_delay_time, 0.0f);
}
const auto pre_delay{long_size_pre_delay_supported ? 350.0f : 150.0f};
const auto pre_delay_line{(pre_delay * delay).to_uint_floor()};
state.pre_delay_line.Initialize(pre_delay_line, 1.0f);
const auto center_delay_time{(5 * delay).to_uint_floor()};
state.center_delay_line.Initialize(center_delay_time, 1.0f);
UpdateReverbEffectParameter(params, state);
for (u32 i = 0; i < ReverbInfo::MaxDelayLines; i++) {
std::ranges::fill(state.fdn_delay_lines[i].buffer, 0);
std::ranges::fill(state.decay_delay_lines[i].buffer, 0);
}
std::ranges::fill(state.center_delay_line.buffer, 0);
std::ranges::fill(state.pre_delay_line.buffer, 0);
}
/**
* Pass-through the effect, copying input to output directly, with no reverb applied.
*
* @param inputs - Array of input mix buffers to copy.
* @param outputs - Array of output mix buffers to receive copy.
* @param channel_count - Number of channels in inputs and outputs.
* @param sample_count - Number of samples within each channel.
*/
static void ApplyReverbEffectBypass(std::span<std::span<const s32>> inputs,
std::span<std::span<s32>> outputs, const u32 channel_count,
const u32 sample_count) {
for (u32 i = 0; i < channel_count; i++) {
if (inputs[i].data() != outputs[i].data()) {
std::memcpy(outputs[i].data(), inputs[i].data(), outputs[i].size_bytes());
}
}
}
/**
* Tick the delay lines, reading and returning their current output, and writing a new decaying
* sample (mix).
*
* @param decay - The decay line.
* @param fdn - Feedback delay network.
* @param mix - The new calculated sample to be written and decayed.
* @return The next delayed and decayed sample.
*/
static Common::FixedPoint<50, 14> Axfx2AllPassTick(ReverbInfo::ReverbDelayLine& decay,
ReverbInfo::ReverbDelayLine& fdn,
const Common::FixedPoint<50, 14> mix) {
const auto val{decay.Read()};
const auto mixed{mix - (val * decay.decay)};
const auto out{decay.Tick(mixed) + (mixed * decay.decay)};
fdn.Tick(out);
return out;
}
/**
* Impl. Apply a Reverb according to the current state, on the input mix buffers,
* saving the results to the output mix buffers.
*
* @tparam NumChannels - Number of channels to process. 1-6.
Inputs/outputs should have this many buffers.
* @param params - Input parameters to update the state.
* @param state - State to use, must be initialized (see InitializeReverbEffect).
* @param inputs - Input mix buffers to perform the reverb on.
* @param outputs - Output mix buffers to receive the reverbed samples.
* @param sample_count - Number of samples to process.
*/
template <size_t NumChannels>
static void ApplyReverbEffect(const ReverbInfo::ParameterVersion2& params, ReverbInfo::State& state,
std::vector<std::span<const s32>>& inputs,
std::vector<std::span<s32>>& outputs, const u32 sample_count) {
constexpr std::array<u8, ReverbInfo::MaxDelayTaps> OutTapIndexes1Ch{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
};
constexpr std::array<u8, ReverbInfo::MaxDelayTaps> OutTapIndexes2Ch{
0, 0, 1, 1, 0, 1, 0, 0, 1, 1,
};
constexpr std::array<u8, ReverbInfo::MaxDelayTaps> OutTapIndexes4Ch{
0, 0, 1, 1, 0, 1, 2, 2, 3, 3,
};
constexpr std::array<u8, ReverbInfo::MaxDelayTaps> OutTapIndexes6Ch{
0, 0, 1, 1, 2, 2, 4, 4, 5, 5,
};
std::span<const u8> tap_indexes{};
if constexpr (NumChannels == 1) {
tap_indexes = OutTapIndexes1Ch;
} else if constexpr (NumChannels == 2) {
tap_indexes = OutTapIndexes2Ch;
} else if constexpr (NumChannels == 4) {
tap_indexes = OutTapIndexes4Ch;
} else if constexpr (NumChannels == 6) {
tap_indexes = OutTapIndexes6Ch;
}
for (u32 sample_index = 0; sample_index < sample_count; sample_index++) {
std::array<Common::FixedPoint<50, 14>, NumChannels> output_samples{};
for (u32 early_tap = 0; early_tap < ReverbInfo::MaxDelayTaps; early_tap++) {
const auto sample{state.pre_delay_line.TapOut(state.early_delay_times[early_tap]) *
state.early_gains[early_tap]};
output_samples[tap_indexes[early_tap]] += sample;
if constexpr (NumChannels == 6) {
output_samples[static_cast<u32>(Channels::LFE)] += sample;
}
}
if constexpr (NumChannels == 6) {
output_samples[static_cast<u32>(Channels::LFE)] *= 0.2f;
}
Common::FixedPoint<50, 14> input_sample{};
for (u32 channel = 0; channel < NumChannels; channel++) {
input_sample += inputs[channel][sample_index];
}
input_sample *= 64;
input_sample *= Common::FixedPoint<50, 14>::from_base(params.base_gain);
state.pre_delay_line.Write(input_sample);
for (u32 i = 0; i < ReverbInfo::MaxDelayLines; i++) {
state.prev_feedback_output[i] =
state.prev_feedback_output[i] * state.hf_decay_prev_gain[i] +
state.fdn_delay_lines[i].Read() * state.hf_decay_gain[i];
}
Common::FixedPoint<50, 14> pre_delay_sample{
state.pre_delay_line.Read() * Common::FixedPoint<50, 14>::from_base(params.late_gain)};
std::array<Common::FixedPoint<50, 14>, ReverbInfo::MaxDelayLines> mix_matrix{
state.prev_feedback_output[2] + state.prev_feedback_output[1] + pre_delay_sample,
-state.prev_feedback_output[0] - state.prev_feedback_output[3] + pre_delay_sample,
state.prev_feedback_output[0] - state.prev_feedback_output[3] + pre_delay_sample,
state.prev_feedback_output[1] - state.prev_feedback_output[2] + pre_delay_sample,
};
std::array<Common::FixedPoint<50, 14>, ReverbInfo::MaxDelayLines> allpass_samples{};
for (u32 i = 0; i < ReverbInfo::MaxDelayLines; i++) {
allpass_samples[i] = Axfx2AllPassTick(state.decay_delay_lines[i],
state.fdn_delay_lines[i], mix_matrix[i]);
}
const auto dry_gain{Common::FixedPoint<50, 14>::from_base(params.dry_gain)};
const auto wet_gain{Common::FixedPoint<50, 14>::from_base(params.wet_gain)};
if constexpr (NumChannels == 6) {
const std::array<Common::FixedPoint<50, 14>, MaxChannels> allpass_outputs{
allpass_samples[0], allpass_samples[1], allpass_samples[2] - allpass_samples[3],
allpass_samples[3], allpass_samples[2], allpass_samples[3],
};
for (u32 channel = 0; channel < NumChannels; channel++) {
auto in_sample{inputs[channel][sample_index] * dry_gain};
Common::FixedPoint<50, 14> allpass{};
if (channel == static_cast<u32>(Channels::Center)) {
allpass = state.center_delay_line.Tick(allpass_outputs[channel] * 0.5f);
} else {
allpass = allpass_outputs[channel];
}
auto out_sample{((output_samples[channel] + allpass) * wet_gain) / 64};
outputs[channel][sample_index] = (in_sample + out_sample).to_int();
}
} else {
for (u32 channel = 0; channel < NumChannels; channel++) {
auto in_sample{inputs[channel][sample_index] * dry_gain};
auto out_sample{((output_samples[channel] + allpass_samples[channel]) * wet_gain) /
64};
outputs[channel][sample_index] = (in_sample + out_sample).to_int();
}
}
}
}
/**
* Apply a Reverb if enabled, according to the current state, on the input mix buffers,
* saving the results to the output mix buffers.
*
* @param params - Input parameters to use.
* @param state - State to use, must be initialized (see InitializeReverbEffect).
* @param enabled - If enabled, delay will be applied, otherwise input is copied to output.
* @param inputs - Input mix buffers to performan the reverb on.
* @param outputs - Output mix buffers to receive the reverbed samples.
* @param sample_count - Number of samples to process.
*/
static void ApplyReverbEffect(const ReverbInfo::ParameterVersion2& params, ReverbInfo::State& state,
const bool enabled, std::vector<std::span<const s32>>& inputs,
std::vector<std::span<s32>>& outputs, const u32 sample_count) {
if (enabled) {
switch (params.channel_count) {
case 0:
return;
case 1:
ApplyReverbEffect<1>(params, state, inputs, outputs, sample_count);
break;
case 2:
ApplyReverbEffect<2>(params, state, inputs, outputs, sample_count);
break;
case 4:
ApplyReverbEffect<4>(params, state, inputs, outputs, sample_count);
break;
case 6:
ApplyReverbEffect<6>(params, state, inputs, outputs, sample_count);
break;
default:
ApplyReverbEffectBypass(inputs, outputs, params.channel_count, sample_count);
break;
}
} else {
ApplyReverbEffectBypass(inputs, outputs, params.channel_count, sample_count);
}
}
void ReverbCommand::Dump([[maybe_unused]] const ADSP::CommandListProcessor& processor,
std::string& string) {
string += fmt::format(
"ReverbCommand\n\tenabled {} long_size_pre_delay_supported {}\n\tinputs: ", effect_enabled,
long_size_pre_delay_supported);
for (u32 i = 0; i < MaxChannels; i++) {
string += fmt::format("{:02X}, ", inputs[i]);
}
string += "\n\toutputs: ";
for (u32 i = 0; i < MaxChannels; i++) {
string += fmt::format("{:02X}, ", outputs[i]);
}
string += "\n";
}
void ReverbCommand::Process(const ADSP::CommandListProcessor& processor) {
std::vector<std::span<const s32>> input_buffers(parameter.channel_count);
std::vector<std::span<s32>> output_buffers(parameter.channel_count);
for (u32 i = 0; i < parameter.channel_count; i++) {
input_buffers[i] = processor.mix_buffers.subspan(inputs[i] * processor.sample_count,
processor.sample_count);
output_buffers[i] = processor.mix_buffers.subspan(outputs[i] * processor.sample_count,
processor.sample_count);
}
auto state_{reinterpret_cast<ReverbInfo::State*>(state)};
if (effect_enabled) {
if (parameter.state == ReverbInfo::ParameterState::Updating) {
UpdateReverbEffectParameter(parameter, *state_);
} else if (parameter.state == ReverbInfo::ParameterState::Initialized) {
InitializeReverbEffect(parameter, *state_, workbuffer, long_size_pre_delay_supported);
}
}
ApplyReverbEffect(parameter, *state_, effect_enabled, input_buffers, output_buffers,
processor.sample_count);
}
bool ReverbCommand::Verify(const ADSP::CommandListProcessor& processor) {
return true;
}
} // namespace AudioCore::AudioRenderer

View File

@@ -0,0 +1,62 @@
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <string>
#include "audio_core/renderer/command/icommand.h"
#include "audio_core/renderer/effect/reverb.h"
#include "common/common_types.h"
namespace AudioCore::AudioRenderer {
namespace ADSP {
class CommandListProcessor;
}
/**
* AudioRenderer command for a Reverb effect. Apply a reverb to inputs mix buffer, outputs receives
* the results.
*/
struct ReverbCommand : ICommand {
/**
* Print this command's information to a string.
*
* @param processor - The CommandListProcessor processing this command.
* @param string - The string to print into.
*/
void Dump(const ADSP::CommandListProcessor& processor, std::string& string) override;
/**
* Process this command.
*
* @param processor - The CommandListProcessor processing this command.
*/
void Process(const ADSP::CommandListProcessor& processor) override;
/**
* Verify this command's data is valid.
*
* @param processor - The CommandListProcessor processing this command.
* @return True if the command is valid, otherwise false.
*/
bool Verify(const ADSP::CommandListProcessor& processor) override;
/// Input mix buffer offsets for each channel
std::array<s16, MaxChannels> inputs;
/// Output mix buffer offsets for each channel
std::array<s16, MaxChannels> outputs;
/// Input parameters
ReverbInfo::ParameterVersion2 parameter;
/// State, updated each call
CpuAddr state;
/// Game-supplied workbuffer (Unused)
CpuAddr workbuffer;
/// Is this effect enabled?
bool effect_enabled;
/// Is a longer pre-delay time supported?
bool long_size_pre_delay_supported;
};
} // namespace AudioCore::AudioRenderer